

WATER SERVICES MASTER PLAN

Water Supply, Waste Water and Storm Water

Contents

1.	Introduction	1
1.1	Background	1
1.2	Purpose	1
1.3	Masterplan Objectives	1
2.	Context	2
2.1	Location	2
2.2	Study Extents	3
2.3	Thimphu Structure Plan	4
2.4	Population Growth	5
2.5	Design Scenarios	7
3.	Climate Change Resilience Assessment	8
3.1	Overview	8
3.2	Climate Trends for Thimphu	9
3.3	Water Resources and Drought Risk Assessment	9
3.4	Climate Risk Analysis: Water Sector	11
3.5	Climate Change Assessment Conclusions and Recommendations	13
4.	Water Supply Masterplan	14
4.1	Existing System	14
4.2	Water Supply Strategies	14
4.3	Design Scenarios	16
4.4	Water Supply Network	17
4.5	Water Treatment Plants	39
4.6	Water Supply Assumptions, Validation and Risks	47
4.7	Water Supply Masterplan Summary	48
5.	Wastewater Masterplan	50
5.1	Existing System	50
5.2	Wastewater Strategies	51
5.3	Design Scenarios	52
5.4	Wastewater Trunk Main Network	53
5.5	Wastewater Treatment Plants	62
5.6	Wastewater and Stormwater Separation Strategy	76
5.7	Other Wastewater Initiatives	80
5.8	Wastewater Assumptions, Validation and Risks	88
5.9	Wastewater Masterplan Summary	89
6.	Stormwater Masterplan	91
6.1	Existing System	91
6.2	Stormwater Strategies	91
6.3	SuDS Initiatives	92
6.4	Proposed Interventions for Stream Corridors	101
TWOMD	ADID 77 XX DD C 000007 Final 9 October 2023 Arun International	

TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Projects Limited

6.5	Stormwater Management for Construction and Operation Activities	102
6.6	Stormwater Masterplan Summary	104

Tables

Table 1: Key Objectives of the Masterplan	2
Table 2: Thimphu Population Distribution	7
Table 3: Summary Wang Chhu and Samtenling Stream Low Flows and Demand (MLD)	10
Table 4: Climate Resilient Opportunities	11
Table 5: Medium Risk Opportunities	12
Table 6: High Risk Opportunities	13
Table 7: Water Supply Objectives and Strategies Matrix	16
Table 8: Water Supply Assessment Scenarios	16
Table 9: Water Availability Assessment	18
Table 10: DMA Data Sheet for Above RICB	20
Table 11: Storage Reservoir Data Sheet for Kuengacholing Tank 1	22
Table 12: Length of Raw Water and Supply Main Network in Landslide Hazard Zones	32
Table 13: Proposed Future Connections	32
Table 14: Water Availability Assessment without Chamgang Old WTP	34
Table 15: Alternative Supplies to DMAs with Insufficient Head from the Begana-Rama Trunk Main	37
Table 16: Chamgang Old WTP Upgrades and Monitoring	41
Table 17: Jungshina WTP Upgrades and Monitoring	42
Table 18: Motihang WTP Upgrades and Monitoring	43
Table 19: Dechencholing WTP Upgrades and Monitoring	44
Table 20: Taba WTP Upgrades and Monitoring	45
Table 21: Babena WTP Upgrades and Monitoring	45
Table 22: Water Supply Masterplan Summary	49
Table 23: Wastewater Objectives and Strategies Matrix	52
Table 24: Flow Estimates per WWTP	52
Table 25: Extension to the Existing Network	53
Table 26: Network Upgrades for Phase 1 (Scenario 2B)	57
Table 27: Proposed Pump Station Details	60
Table 28: Scenario 3C Results Using Preferred Option	60
Table 29: Existing and Proposed WWTP	62
Table 30: Dechencholing WWTP Recommended Upgrades	63
Table 31: Taba WWTP Recommended Upgrades	64
Table 32: Jungshina WWTP Recommended Upgrades	64
Table 33: Langjophakha WWTP Recommended Upgrades	65
Table 34: Lungtenzampa WWTP Recommended Upgrades	66
Table 35: Babesa WWTP Recommended Upgrades	67
Table 36: First Stage of Screening Options for New WWTP	69
Table 37: Assessment of NBS	73
Table 38: Preferred Technologies for New Hejo WWTP	73
Table 39: Assessment of NBS for New WWTP	76

TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Projects Limited

Table 40: Survey Types for Investigation Stage	79
Table 41: Sludge Management Practices per WWTP	80
Table 42: FSM Approach for 2032 Scenario	80
Table 43: FSM Approach for 2047 Scenario	82
Table 44: Safe Disposal and Reuse Options	83
Table 45: Additional Areas Required for Land-based Sludge Application, Depending on Selected Approach	83
Table 46: Characteristics of Composite Manhole Covers	84
Table 47: Types of Composite Manhole Covers	85
Table 48: Solid Waste Entry Interventions	86
Table 49: Wastewater Masterplan Summary	90
Table 50: Stormwater Objectives and Strategies Matrix	92
Table 51: Mitigation Measures	103

Figures

Figure 1-1: Project Phases	1
Figure 2-1: Map of Bhutan	3
Figure 2-2: Study Extents	4
Figure 2-3: Population Growth as per Regional Strategy	6
Figure 2-4: Urban Hierarchy Concept	6
Figure 3-1: Water Governance in Bhutan	8
Figure 4-1: Water Availability Summary	17
Figure 4-2: Mains Arrangement Showing Trunk Mains and Network Components	17
Figure 4-3: DMAs with Reallocated WTP Supply Source	19
Figure 4-4: Identified Network Pressure Deficiencies, Velocity Deficiencies and Proposed Pumps and Valves	24
Figure 4-5: Upgrades to the Existing Network	26
Figure 4-6: Opportunity to Reroute Raw Water from Taba Raw Water Trunk Main to Jungshina WTP	27
Figure 4-7: Water Mains Relative to Landslide Hazard Zones	31
Figure 4-8: Potential Mains Reinforcement for Rezoning Chamgang Old WTP Demand to Taba WTP	35
Figure 4-9: Utility Corridor with Flow Breakdown and DMAs with Insufficient Head from Begana- Rama Trunk Main	36
Figure 4-10: General Concept for SCADA Upgrades	40
Figure 4-11: Chamgang Old WTPs Recommendations	42
Figure 4-12: Taba WTP Monitoring	45
Figure 5-1: Extension to Existing Wastewater Network	54
Figure 5-5: Proposed Wastewater Main Route	56
Figure 5-6: Wastewater Network Phasing	58
Figure 5-7: Wastewater Network Sizing for Design Year 2047	59
Figure 5-8: High Flow Scenario Check	61
Figure 5-9: Dechencholing WWTP Process Flow Diagram (PFD) Recommended Upgrades	63
Figure 5-10: Taba WWTP PFD Recommended Upgrades	64
Figure 5-11: Langjophakha WWTP PFD Recommended Upgrades	65

Figure 5-12: Lungtenzampa WWTP PFD Recommended Upgrades	66
Figure 5-13: Babesa WWTP PFD Recommended Upgrades	67
Figure 5-14: Location Assessed for the New Hejo WWTP	72
Figure 5-15: Proposed Location for Rama Wastewater Treatment Facility	75
Figure 5-16: Wastewater Separation Strategy	76
Figure 5-17: Wastewater Separation Delivery Plan	77
Figure 5-18: FSM Hybrid Approach for Thimphu	82
Figure 5-19: FRP Manhole Covers from Chinese Manufacturers	84
Figure 5-20: Example Diagrams of Interceptor Chambers (Source: Zurn)	86
Figure 5-21: Example Wastewater Screen (Source: JWC Environmental)	87
Figure 5-22: Pros and Cons of Wastewater for Irrigation (Ofori, 2021)	88
Figure 6-1: Cross-section for Norzin Lam (Northern Section)	93
Figure 6-2: Norzin Lam Street Section Plan with SuDS Infrastructure Management Plan	94
Figure 6-3: Proposed Run-off Route from Main Public Roads	94
Figure 6-4: Examples of Additional SuDS depicted Clockwise from Top Left: Permeable/Porous Pavement; Perforated Lateral Drain; Swale; and Filter Trench	95
Figure 6-5: Stormwater Drainage Design from Road Adjacent Buildings	96
Figure 6-6: Changzamtog Park Concept Design	97
Figure 6-7: Typical Filter Trench Design	99
Figure 6-8: Block Section Plan for SuDS Infrastructure Management Plan	100
Figure 6-9: Streams for Daylighting	102

Appendices

Appendix A	A-105
Climate Change Assessment Risk Matrix	A-105
Appendix B	B-106
Water Supply Maps	B-106
Appendix C	<mark>C-107</mark>
Data Sheets – DMAs and Storage Reservoirs	C-107
Appendix D	D-108
Water Supply Hydraulic Modelling Results	D-108
Appendix E	E-112
Begana-Rama Trunk Main Calculations	E-112
Appendix F	F-113
Wastewater Supply Maps	F-113
Appendix G	<mark>G-114</mark>
Upgrades to Existing WWTPs	G-114
Appendix H	H-115
New WWTP Pre-selection	H-115
Appendix I	<mark>I-116</mark>
Wastewater Separation Strategy Example	I-116

Abbreviations

Abbreviation	Definition
BBF	BioBall Filter
BMC	Bulk Moulding Compounds
BOD	Biological Oxygen Demand
CAPEX	Capital Expenditures
CIRIA	Construction Industry Research and Information Association
The Client Team	Ministry of Works & Human Settlement; Thimphu Thromde; Royal Commission for Urban Development (RCUD)
CMIP6	Coupled Model Inter-comparison Project Phase 6
COD	Chemical Oxygen Demand
DWR	Drinking Water Regulations
DO	Dissolved oxygen
ECMWF	European Centre for Medium-Range Weather Forecasts
EU	European Union
FRP	Fibre Reinforced Plastic
FSM	Faecal Sludge Management
GIS	Geographic Information System
GLOF	Glacier Lake Outburst Floods
ICW	Integrated Constructed Wetlands
IFAS	Integrated Fixed Film Activated Sludge
IPCC	International Panel on Climate Change
lpcd	litres per capita per day
MBBR	Moving Bed Biofilm Reactor
min	minutes
mm	millimetre
m ³ /h	cubic metres per hour
MLD	million litres per day
MLE	Modified Ludzack-Ettinger
MoIT	Ministry of Infrastructure and Transport
MRP	Molybdate Reactive Phosphorus
NBS	Nature Based Solutions
NRW	Non-revenue Water
OPEX	Operational Expenditures
PESTLE	political, economic, social, technological, legal and environmental

Abbreviation	Definition
PFD	Process flow diagram
PRV	Pressure reducing valve
PS	Pump stations
P&P	Prior & Partners
RCUD	Royal Commission for Urban Development
SBR	sequential batch reactor
SCADA	Supervisory Control and Data Acquisition
SMC	Sheet Moulding Compounds
SRT	solids retention time
SSP	Shared Socioeconomic Pathways
SuDS	Sustainable Urban Drainage Systems
TDH	Total dynamic head
TKN	Total Kjeldahl Nitrogen
TN	Total Nitrogen
TSP	Thimphu Structure Plan
TSS	Total Suspended Solids
TT	Thimphu Thromde
WDM	Water Demand Management
WSP	Water Safety Plan
WTP	Water treatment plant
WWTP	Wastewater treatment plant

1. Introduction

1.1 Background

Arup prepared a Water Services Masterplan, in support of the Ministry of Infrastructure and Transport (MoIT) (formerly Ministry of Works and Human Settlement), Thimphu Thromde (TT) and the Royal Commission for Urban Development (RCUD) (the Client Team) in their review of the Thimphu Structure Plan (TSP). The aim of the project was to examine the infrastructure of the existing water supply, wastewater and stormwater systems and identify capital improvement projects required to service existing and future development within Thimphu. The Masterplan ran simultaneously with the TSP, providing inputs as required and to inform the TSP. The Masterplan provides the MoIT and RCUD with a list of recommended concept-level projects at a citywide scale.

1.2 Purpose

This report relates to Phase D of the Thimphu Water Services Masterplan "Optioneering and Strategy Design" as shown in Figure 1-1. The report builds on the works undertaken in previous phases, including:

- Further development of hydraulic models of the Water Supply and Wastewater networks.
- Appraises the strengths and weaknesses of the existing system, based on the data gathering and analysis carried out in Phase A and B.
- Based on available information, using quantified data or risk-based approach, and considering design vision, identify priority projects.
- Where required, make recommendations for improving system monitoring, to enable more specific planning of project interventions.

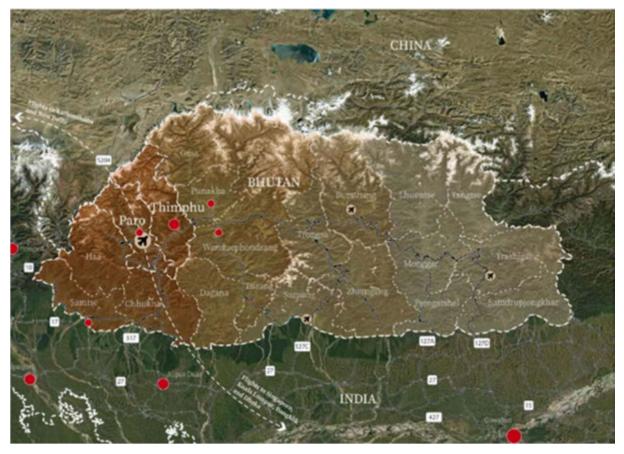
The output from Phase A *Initial Options Analysis: Constraints and Opportunities Report* was issued in November 2022. Unless otherwise noted, assumptions and outcomes from Phase A were carried through and used in Phase B *Water Supply, Wastewater and Stormwater Assessment,* which was issued in March 2023, and continue to be used in this Phase D.

1.3 Masterplan Objectives

The overarching strategy for Water Services in Thimphu is to provide a safe, equitable, reliable and resilient network which meets international Drinking Water Standards and protects natural watercourses. The Masterplan will support the growth of the city in line with the outcomes of the TSP and contribute to improved health and wellbeing of Thimphu and the surrounding environment.

The objectives of this Masterplan were developed as part of the TSP through a mix of international best practice, client ambition and consultation with stakeholders as relevant to the Thimphu context. These were further developed as part of this Masterplan.

The objectives of the water supply, wastewater and stormwater systems are outlined in Table 1.


Table 1: Key Objectives of the Masterplan

System	Objective			
	All residents within Thimphu will be served by a 24/7, high quality, safe and reliable water supply.			
	Fair and efficient supply of water to all consumers within Thimphu Thromde (including domestic, non-domestic and commercial customers) and allow for growth of the city in accordance with the provisions of the TSP.			
	Promote sustainable use of water to minimise the effect on the environment.			
Water Supply	The water supply infrastructure can deliver necessary flows and pressures throughout the city for firefighting purposes in line with the requirements of the Fire Department.			
	The water supply network will be sensitive to the natural environment.			
	The water supply system will be operated economically and efficiently.			
	The water supply system will be resilient to shocks and stresses including climate change.			
	All residents within Thimphu will be connected to the municipal wastewater system.			
	Wastewater in Thimphu will be managed in a manner that both protects the environment and minimises the risk to public health.			
Wastewater	Wastewater services shall be provided to international standards for all residents, businesses, schools and healthcare facilities in Thimphu and allow for growth of the city in accordance with the provisions of the TSP.			
	All wastewater is treated prior to discharge to the environment.			
	The wastewater system will be operated economically and efficiently.			
	Improve the water quality of stormwater run-off.			
	Reduce stormwater run-off rates.			
Stormwater	Enhance amenity and biodiversity benefits of stormwater infrastructure.			
	Improve the water quality of natural watercourses.			
	Re-naturalise existing culverted streams.			
General	Establish construction Quality Assurance / Quality Control standards for pipelaying.			

2. Context

2.1 Location

Thimphu, the capital city of Bhutan, is located in Himalayas at an elevation of approximately 2,300 metres (m) above sea level. The city is located in the western central part of Bhutan, in the valley of the Wang Chhu, surrounded by steep mountains Figure 2-1.

Figure 2-1: Map of Bhutan

2.2 Study Extents

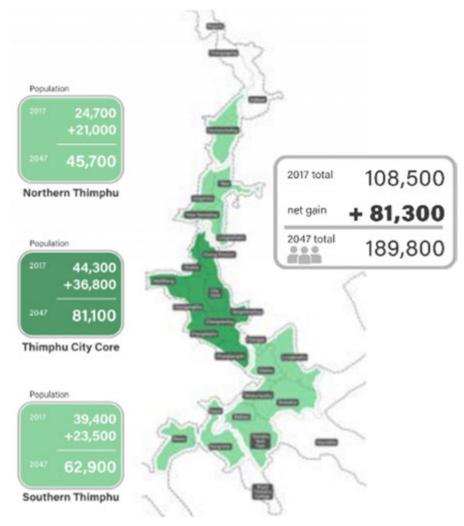
The extent of this assessment is based on the boundary of Thimphu Structure Plan, an area of 65km², stretching from Dodena in the north to Namseling in the south, and up the tributary valleys of Kabesa, Dechencholing, Taba, Motihang, Maymaylakha and Royal Thimphu College. The study extents are depicted in Figure 2-2.

Figure 2-2: Study Extents

2.3 Thimphu Structure Plan

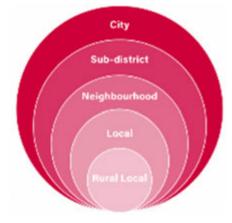
Thimphu's population has grown at a rapid pace over the past two decades through rural to urban migration. Thimphu's urban footprint has also significantly grown. Bhutan's urban population growth rate was the highest among the eight South Asian countries, at 5.7% per year from 2000-2010. Thimphu's urban population growth rate per year was high and is expected to remain high for the next two decades.

The proposed Thimphu Structure Plan (TSP) 2022 looks forward 25 years up to 2047. The TSP provides the strategic frameworks for how Thimphu should sustainably grow and develop in the future, through regeneration of existing urban areas and expansion of the city to the south.


The plan sets out limits to the city, whilst also identifying where and how urban development can be accommodated. This includes plans that establish land use across the city and associated policies that will guide development where these land uses apply. In addition, it sets out transport interventions and other forms of infrastructure to promote Gross National Happiness, support good quality of life and meet the needs of Thimphu's residents within the city's ecological limits.

2.4 **Population Growth**

Population growth in Thimphu was initially undertaken as part of the Thimphu-Paro Regional Strategy in July 2022. A bottom-up approach was used to determine the population uplift. This approach identified sites across the city that could accommodate urban growth and determining the carrying capacity of these sites through determination of measures such as:


- Proportion of the site available for development
- Building efficiency
- Land use
- Site density

The results of this assessment are shown in Figure 2-3.

Figure 2-3: Population Growth as per Regional Strategy

Population distribution was further refined for Thimphu City as part of the TSP and as shown in Figure 2-4. This refinement focussed on an Urban Hierarchy, ensuring activity hubs are accessible and appropriately scaled to cater to the needs of population catchment sizes.

Rural local	2,000 people
Local	2,000-5,000 people
Neighbourhood	5,000-15,000 people
Sub-district	<50,000 people
City	>150,000 people

Figure 2-4: Urban Hierarchy Concept

The proposed population growth for each neighbourhood is shown in Table 2.

People Net Sub-districts **Neighbourhoods People Existing People Total** Gain 2047 2047 2017 Northern Thimphu SD1 6,490 13,158 Dechencholing 6,668 5,980 9,125 Taba 3,145 Jungshina 4,730 4,601 9,331 3,797 Langjophaka 2,500 1,297 Hejo-Samtenling 5,010 5,361 10,371 Thimphu City Core **Dzong Precinct** 410 _ 410 SD2&3 6,960 571 7,531 Motihang Zilukha 2,590 375 2,965 Changanakha 20,057 6,200 13,857 7,122 City Core 5,760 12,882 1,189 4,769 Changedaphu 3,580 10,543 23,833 Changzamtog 13,290 4,950 Changbangdu 3,540 1,410 1,990 Yangchenphug 1,719 3,709 Southern Thimphu SD4 4,610 1,462 6,072 Changjiji Simtokha 3,630 1,322 4,952 Lungtenphu 4,890 5,996 1,106 14,772 Olakha 3,602 11,170 5,920 3,225 9,145 Tshalumarphy Babesa 6,400 3,651 10,051 Serbithang 192 1,120 1,312 _ 5.009 5.009 Rama Gangchey 100 100 -Debsi 1,600 3,889 5.489 Ngabiphu Thimphu Thromde Total 108,470 81,316 189,786

Table 2: Thimphu Population Distribution

Population growth will impact water and wastewater demand, but growth in specific areas will be constrained by the availability of water services. The long-term strategy will provide adequate water supply and wastewater drainage for all properties, however the programme for the upgrading of treatment plants, pipelines and storage reservoirs will depend on the phasing of this growth, ensuring that existing properties and customers are not negatively impacted by the additional demands.

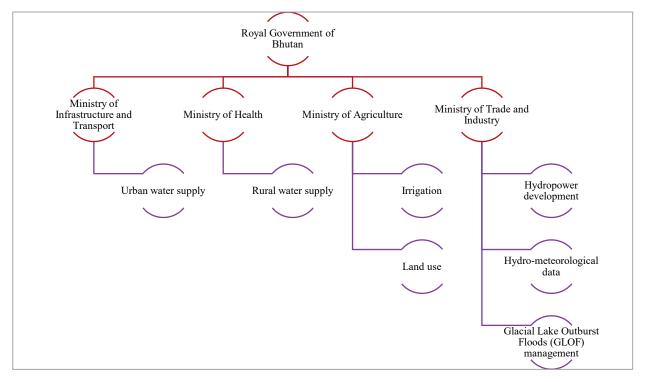
2.5 Design Scenarios

The Masterplan examines the Water systems under three scenarios, current, mid-term (2032) and long-term (2047) in line with the TSP.

The current scenario represents the baseline condition. The current scenario includes population data from 2017, the per capita water consumption provided by Thimphu Thromde, non-revenue water audit data provided by Thimphu Thromde and assumptions around the percentage of water which is discharged to the wastewater system.

The future scenarios assessed include a mid-term 2032 scenario and a long-term 2047 scenario, in alignment with the TSP phasing and planning strategies.

Future population estimates and target consumption and leakage figures were applied. The current and two future scenarios were assessed in detail in the *Water Supply, Wastewater and Stormwater Assessment* to evaluate the operational performance of the existing and future water and wastewater systems.


3. Climate Change Resilience Assessment

A review was performed into areas of capital improvement opportunities previously identified to enhance water services across Thimphu, considering influences and impacts of climate change. A wider consideration of the city's catchment was taken into account considering climate change scenarios and temperature and precipitation trends. Refer to Appendix A for additional details on the Climate Change Resilience Assessment.

3.1 Overview

As Thimphu's population grows larger and more urbanised, resilient urban water management is critical to ensuring it is safe, healthy and prosperous development in the face of an unpredictable and changing climate. Water resilience describes the capacity of a city to function in the face of water-related stresses so that those living and working within the city can survive and thrive. In Thimphu, there is an increasing need for improved urban water management that ensures consistent, adequate and high-quality water services for all.

The Royal Government of Bhutan governs water supply, irrigation and flood management through four different ministries, as shown in Figure 3-1. In 2001, the Bhutan Water Partnership – a non-profit entity affiliated to the Global Water Partnership, was created to achieve the goals of Integrated Water Resource Management (IWRM) which incorporates water industry members beyond the four ministries (Royal Government of Bhutan, 2007). The 2011 Water Act and the 2014 Water Regulation Act govern the management of water resources and regulation of water prices respectively (National Environment Commission, 2014).

Figure 3-1: Water Governance in Bhutan

Most of the major rivers in Bhutan originate from glaciers and are recharged by watershed. River discharge results primarily from rainfall, supplemented by an estimated 2-12% glacial melt and another 2% from snow melt. The combined national outflow of the rivers is about 70,576 million m³ (or 2,238m³/s), which corresponds to a flow of 109,000m³ per capita per year.

Bhutan experiences a monsoon-influenced humid tropical climate, dominated by seasonality in precipitation, with long periods of low rainfall followed by periods of intense rainfall (World Bank Group, 2021). Water shortages are prevalent in the country, where safe drinking water coverage is not universal and shortages are already present due to rainfall seasonality (Royal Government of Bhutan, 2007). In 2021 the annual rainfall was 1,685mm, with rainfall seasonality in this period.

Climate analysis of Bhutan and the Thimphu region by the International Panel on Climate Change (IPCC) and the World Bank suggest the following effects of climate change (World Bank Group, 2021):

- Warming of 3.9°C by the 2090s.
- Increase in the impact of flooding.
- Increase in the likelihood of heatwaves and droughts.
- Increased snowmelt with temperature rise leading to significant changes in river discharges and water resource availability.

Such changes in climate need to be considered in planning for future water supplies, such as current reliance on abstraction points which may become vulnerable to drier weather, limited storage capacities in the face of heightened monsoon seasons and operational water supply infrastructure to accommodate for the demand across the network.

3.2 Climate Trends for Thimphu

Climate projections for Bhutan are best explored through temperature and precipitation. Bhutan is set to experience more severe warming than the global average by the 2090s (World Bank Group, 2021).

The probability of heatwaves in Bhutan is set to increase from 2% currently to 20% by 2100 (World Bank Group, 2021), which is significant enough to exacerbate Bhutan's existing water system risks. Increased warming in Bhutan is set to cause glaciers in the country retreat, which would result significant reduction in available water resources in the region (World Bank Group, 2023).

Variation in rainfall and temperature are likely to significantly affect the water resources of the region and the water resource management. Studies conducted across the Masterplan show substantial seasonal changes in water flow levels for extended periods of the year that do not fully utilise water treatment plant (WTP) capacities. There is an anticipated change in seasonal precipitation trends, indicating a decrease in rainfall from September-February and increase in rainfall from March-August.

Key water resource features that will be affected by change in temperature and increased seasonality of rainfall and intensity include, but are not limited to:

- Management of water storage
- Flood risk management
- Distribution of potable water in periods of low precipitation
- Land use management- Nature-based Solutions (NBS) and Sustainable Urban Drainage Systems (SuDS)

These operational features will be affected at different levels by climate change. The resilience of these systems is explored further in Section 4.

3.3 Water Resources and Drought Risk Assessment

The security of water resources in dry conditions, considering annual variability, drought and climate change, is key to the urban water supply in Thimphu. Thimphu lies in the upper Wang Chhu basin, with the Wang Chhu itself being the primary watercourse through the city. The Wang Chhu has an annual total flow of 5,200Mm³, which is 7.4% of the total run-off of Bhutan (National Environment Commission Royal Government of Bhutan, 2016).

The monsoon climate in Bhutan is characterised by low rainfall during the cooler winter months and much higher rainfall during the warmer summer months. This results in highly variable flows throughout the year, proving a challenge to water resources requirements of Thimphu. The months of December, January and February typically experience the lowest surface water flows. Snow and ice melt partially contributes to dry season flow, however the effect of this is limited due to reduced melting in winter temperatures, reduced precipitation and the lack of significant glaciers in the upper Wang Chhu catchment.

Little is known about groundwater in the Wang Chhu basin. There is limited groundwater exploitation in Thimphu, but the government generally discourages groundwater abstraction until aquifers are better understood (National Environment Commission Royal Government of Bhutan, 2016).

3.3.1 Supply Network Overview

The Thimphu water supply network abstracts from nine surface water sources at 12 intakes, feeding nine WTPs. The Thimphu water supply network capacity is 35.5 million litres per day (MLD), as defined by current maximum WTP output. The largest of these abstractions is 10MLD from the Wang Chhu at Dodena, approximately 20 km upstream of Thimphu centre. Another significant abstraction source is the Samtenling Stream (7.9MLD). Two intakes draw water from the Samtenling, the larger of which then feeds a run-of-the-river mini-hydropower station at Jungshina. The outflow of the power station is then treated at a WTP and enters the supply network. The remaining abstractions take place from smaller tributaries at higher elevations above the valley floor, where water cannot easily be pumped to. Additionally, there are three abstraction boreholes at depths of 32-53m below the surface feeding the Changbangdu WTP with a total capacity of 1.2MLD.

3.3.2 Drought Analysis

A simple low flow analysis was conducted using simulated data obtained from the Streamflow Prediction Tool for the Wang Chhu at Dodena and Samtenling Stream to provide an indication of the flow levels that could be experienced during severe drought events. The available data covered a 40-year period from 1980 to 2019. The lowest daily flows for each timeseries were ranked to obtain the return period and using this relationship, low flows with return periods of 100-years, 200-years and 500-years were extrapolated, as seen in Table 3. The analysis was performed on the raw daily data, rather than performing low-flow separation by each dry season.

Source	Abstraction	100-Year Flow	200-Year Flow	500-Year Flow
Wang Chhu	10	157	154	149
Samtenling Stream	7.9	12.2	10.8	9.1

Table 3: Summary Wang Chhu and Samtenling Stream Low Flows and Demand (MLD)

The Wang Chhu does not approach the current abstraction level of 10MLD, indicating a strong level of resilience to a 500-year drought event. The Samtenling Stream does approach the abstraction level of 7.9MLD at this level of severity. Additionally, the intake at the Samtenling Stream will not be 100% efficient in abstracting all available water, suggesting that the Samtenling Stream could present a drought-risk to water supply. Based on the IPCC data for Bhutan, these assessments do not incorporate the effects of climate change.

It is essential to acknowledge the significant uncertainty associated with these values. The estimated drought flows are subject to considerable uncertainty due to various factors, including the meteorological forecasting and routing models used in the Streamflow Prediction Tool as well as the extreme extrapolation to a 500-year event. Therefore, these values serve as indicators of potential drought flows rather than definitive values and provide context and need for more detailed drought risk assessments to be carried out.

The Wang Chhu Basin Management Plan (National Environment Commission Royal Government of Bhutan, 2016) has conducted some climate change analysis based on the RCP 4.5 and RCP 8.5 scenarios. These analyses indicate that historical flows of the Wang Chhu at the Lungtenphu gauging stations have dropped as low as $3.2m^3/s$. Climate change is expected to increase the frequency of flow reductions to this level, but not

necessarily intensifying the severity of drought (National Environment Commission Royal Government of Bhutan, 2016).

There is no current consideration of ecological flow requirements as these assessments was not undertaken. The inclusion of ecological flow considerations would provide additional constraints on water abstraction.

3.4 Climate Risk Analysis: Water Sector

3.4.1 Approach

The climate risk methodology analyses the opportunities outlined in the *Initial Options Analysis: Constraints and Opportunities Report*. Climate change indicators were applied as a qualitative way of measuring change, which considers effects and impacts of climate change, adaptation and resilience. The opportunities considered were previously identified as bankable projects and programmes for the improvement of water services in Thimphu. The opportunities provided were summarised by water supply, wastewater and stormwater categories, which were established as either providing climate change resilience or not.

A climate change risk matrix (included in Appendix A) was developed to conduct a qualitative assessment of the water services opportunities in relation to their impacts by the effects of climate change. The opportunities related to operational issues were not taken into account.

3.4.2 Results and Analysis

The preliminary results from the climate resilience risk matrix are the results of the overall rating of each opportunity in response to the climate change indicators.

Climate Resilient Opportunities

The opportunities in Table 4 are classed as low-risk opportunities in relation to climate change uncertainty and impacts.

Category	Opportunity	Remarks		
Water Supply	Water supply expansion	Mostly related to operational issues.		
	Rationalising WTPs	Increase of abstraction and storage opportunities.		
	Source monitoring	As a monitoring component to abstraction, this will provide information for future abstraction development.		
	Upsize storage reservoirs	Mitigating flooding, can affect seasonality and inflow. More intense rain can be managed by greater storage, as can changing seasonality.		
Wastewater	Implementation of greywater reuse	Diversifying water sources. Consideration of drier weather and demand reduction effect on greywater use.		
Stormwater	Daylighting existing culverted streams	Such culverted streams reduce the flows of stormwater, reducing events of flooding and minimising impacts of flash flooding.		
Stormwater	Reconnect greywater to wastewater network			
	First flush capture and treatment	As an additional source of water and water capture, this activity reduces reliability of water flowing through abstraction points but can be seen as a "nice to have".		
		Diversification of water sources, capturing clean water.		

Table 4: Climate Resilient Opportunities

Medium Risk Opportunities to Climate Change

The following opportunities in Table 5 are classed as medium-risk opportunities in relation to climate change uncertainty and impacts.

Table 5: Medium Risk Opportunities

Category	Opportunity	Remarks		
Water Supply	Demand reduction	Climate change impacts have direct influence on behaviour and have been known through temperature and/or population increase/movements, to drive demand.		
	Public awareness campaign	Communicating impacts of climate change to users and company, understanding of supply / demand effects.		
Wastewater	Safe disposal of septic tank waste	Variations in temperature cause disruption in biological activity, increased population impacts on needs for septic tanks. Already, harmful pathogens are found in stormwater as a result of malfunctioning septic tank systems which services 25% of the current city.		
	Monitoring of blockages	Key component to informing decisions and mitigating flooding events.		
	New or upgrades to WWTP	Opportunity to maximise higher efficiencies, use of sludge, reducing energy usage. Additionally, current WWTPs do not contain biological nutrient removal system in the WWTPs to treat Molybdate Reactive Phosphorous (MRP) and ammonia. This can be harmful to surrounding ecosystems due to rapid algal growth, harming water quality, food resources, habitats and decreases in oxygen required for fish need to survive.		
	Solid waste disposal and management	Variations in temperature cause disruption in biological activity, increased population impacts on needs for septic tanks. Safe management of solid waste required. High rainfall or seasonality – monsoon bursts can result in increased overflows, blockages and breakages.		
	Sanitation public awareness campaign	Communicating impacts poor sanitation and building resilience from a human element. Heat and dry spells mean competing demand for water between sanitation use and irrigation, productive uses and drinking. Parts of the population still practice open defecation or pit toilets causing public and environmental public risks. Actions: Conduct hygiene promotion activities to encourage good hygiene practices when water is scarce and encourage and support the safe reuse and recycling of greywater, can improve on informed choices of processes around different technology options.		
Stormwater	Flow monitoring of stormwater inflows	Accurate readings can inform varying flows and adverse effects on WWTPs and abstraction points.		
	Coordination inclusion of SuDS and NBS	Land use has positive impacts on volume reduction.		
	Stormwater Reuse	Diversification of water sources.		
	Community awareness of stormwater management	Pro-active disaster risk management and resilience amongst communities.		

High Climate Risk Opportunities

The following opportunities in Table 6 are classed as high-risk opportunities in relation to climate change uncertainty and impacts.

Category	Opportunity	Remarks
Water Supply	New abstractions from tributaries	May be required to meet increases in demand, but climate change impacts may reduce abstraction availability or increase the drought risk associated with existing and new abstractions.

3.5 Climate Change Assessment Conclusions and Recommendations

Smaller water sources, such as Samtenling Stream, are more vulnerable to droughts and fluctuations in flow rates from changes in precipitation or snow melt. There is more security around larger watercourses, such as the Wang Chhu because the impacts from climate change are unlikely to reduce below the effective abstraction rate. The Wang Chhu as a water source is anticipated to have a reliable, sufficient supply in the long-term, although diversification of supply sources improves overall resilience of a system. To better understand this risk, continued monitoring and source inventory assessments are required to establish a baseline and evaluate trends. In the medium term, which is within the operational life of the WTPs, there is the potential for more vulnerable sources to drop below abstraction rates during severe drought, but this effect is not yet quantifiable without better data.

Thimphu and its surrounding areas water resources will face new, complex and pervasive challenges caused by population growth, socio-economic development and climate change. A multi-disciplinary approach is required; this can be effectively addressed through defined policies, public regulation, stakeholder participation and well-designed development programme with efficient management institutions. The following recommendations are made:

- Drive the development of drought management plans through which TT monitors various indicators of water availability and assesses the level of risk associated with all the abstractions. A relevant drought plan sets out drought onset monitoring, drought triggers and appropriate actions to be taken at each stage of a drought. At certain points, known as triggers, specific actions to manage water supplies and water demand are taken.
- Include improvement of rural supply as part of the city's urban plan. This will positively impact potable and stormwater as pipes in remote settlements are currently feeding off stormwater networks that are likely to be unreliable in the long term.
- More effective monitoring should include water quality checks for harmful pathogens such as E-coli in rivers where septic tanks and wastewater discharge. Increasing temperatures due to climate change are likely to improve the conditions for development of pathogens and could increase the period of time (season) during which they proliferate.
- Continued monitoring and learning as the frequency of droughts and floods become more prevalent. This requires proactivity and engagement to ensure lasting resilience.
- Work to provide greater visibility and understanding of climate change patterns and expected impacts, to mitigate the resulting linked water demand or usage patterns (usually increases).
- Strengthen partnerships and organisations such as the Bhutan Water Partnership, to become more effective in its roles and responsibilities, which could extend beyond infrastructure in the water sector.
- Diversification of supply sources (i.e., greywater, stormwater harvesting, supporting abstractions, etc.) should be ensured for the population reliant on this source. Data uncertainties notwithstanding, the Samtenling source potentially vulnerable to drought.
- Conduct an ecological assessment will be important to identify ecological low-flow requirements. There are currently no ecological flows available.
- Conduct a full source inventory assessment with recommendations for monitoring needs.

During implementation of the Water Services Masterplan, ensure that guidance provided in existing documents and national plans were incorporated for consistency, such as the National Water Supply

Strategy, Integrated Water Resources Management Plan and learnings from the National Rural Sanitation and Hygiene Programme for instance.

4. Water Supply Masterplan

This section focuses on the water supply system in Thimphu and is structured to discuss the appraisal and actions related to key areas of the water supply system. This section includes:

- Summary of existing system
- Objectives and strategies for the water supply system
- Design scenarios considered in the assessment
- Appraisal of the water supply trunk system and recommended actions
- Appraisal of the WTPs (existing and proposed) and recommended actions
- Other initiatives

4.1 Existing System

Access to clean water and sanitation is one of the 17 United Nations Sustainable Development Goals. There is currently inadequate water available to all residents in Thimphu and the supply is inconsistent and unreliable. The total current demand for potable water in Thimphu is approximately 30.6MLD. Approximately 85% of this water is provided by Thimphu Thromde and the remainder is provided by private or community supplies, which are not chlorinated and are therefore susceptible to contamination.

Based on discussions with MoIT and TT, most people on the municipal supply consume water directly from the tap. There were no major reports of contamination events in recent years. Chlorination contact time was identified as insufficient at some WTPs as part of the *Water Supply, Wastewater and Stormwater Assessment*, however residual chlorine levels still meet acceptable limits; therefore, there is no indication that there are issues regarding the safety of the water supply for human consumption. The Ministry of Health undertake regular sampling and testing of the water and there are no fundamental water quality issues. The Masterplan allows for all properties within TT to be supplied by the municipal network which would reduce this contamination risk.

Raw water is extracted and treated by nine WTPs with a combined design capacity of 39MLD. There are 49 storage reservoirs used to control the pressure and flow into different Demand Management Areas (DMAs) with a combined capacity of 10.5 million litres (ML).

There is good coverage of watermains throughout the city delivering potable water. A recent Water Loss Audit by Water Management International (September 2022) identified water losses of 47.5%-60.5% in the water supply network caused by leakage, high pipe burst rates, storage reservoir overflows and high system pressures. The water supply network is also unable to provide adequate firefighting capacity due to the lack of availability of water at certain times of the day, fire hydrants coverage and insufficient pipeline hydraulic capacity for the firefighting flow rates.

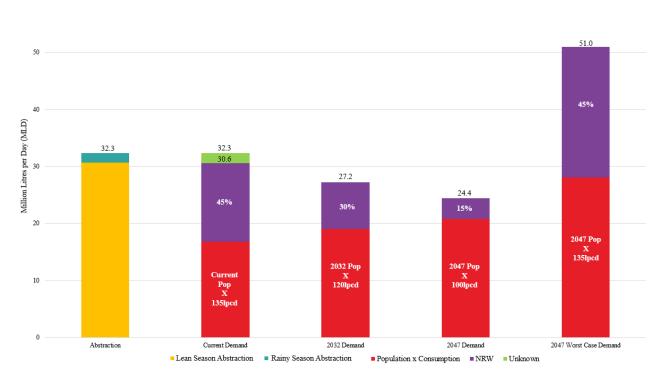
4.2 Water Supply Strategies

The water supply strategy aims to create opportunity through water systems which support sustainable growth within the city. This includes cultivating a balance between managing non-revenue water losses, such as leakage, and water demand to ensure adequate water for living while protecting natural water resources. A goal is to inspire the public to understand the water systems and how they can contribute to sustainable management of water in Thimphu.

The following strategies for the water supply system were developed through consultations with stakeholders to meet the objectives of the Masterplan. Table 7 shows the relationship between the different strategies and the objectives they help to achieve, as outlined in Section 1.3.

- Reduce potable water demand from 135 litres per capita per day (lpcd) to 100lpcd.
- Reduce Non-revenue Water (NRW) losses from >50% to <15%.
- Increase water storage from <12 hours to >48 hours to prevent a loss of supply during planned or unplanned interruptions.
- Operate the water supply network as a Smart water networks.
- Establish construction Quality Assurance / Quality Control standards for pipelaying to improve operations, maintenance and reduce water losses.
- Protect trunk mains from damage due to natural hazards to ensure the water supply is resilient through emergencies. Identifying routes prone to natural hazards (e.g., flooding, landslides) and diverting and protecting trunk lines which could be affected is essential to maintaining supplies.
- Adequately serve schools and health centres with a reliable water supply to minimise community health risks.
- Divert watermains currently laid through stormwater drains and bury under roads or footpaths.
- Potable water quality achieves European Union (EU) Drinking Water Regulations.
- Extend the existing watermain network to new neighbourhoods.
- Upgrades to existing watermains and network infrastructure to meet current and future demands.
- Upgrades to WTPs to meet current and future demands.

Table 7: Water Supply Objectives and Strategies Matrix

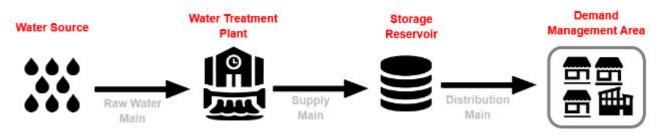

			Objectives				
		24/7, high quality, safe and reliable water supply.	Fair and efficient supply of water to all consumers.	Sustainable use of water.	Infrastructure suitable for firefighting purposes.	Sensitive to the natural environment.	
	Reduce potable water demand		✓	✓		✓	
	Reduce water losses	✓	√	√		✓	
	Increase water storage	✓			1		
	Smart water networks		1	√			
	Quality Assurance / Quality Control standards						
egies	Protect trunk mains from damage due to natural hazards	1					
Strategies	Adequately serve schools and health centres	✓	√				
S	Divert existing watermains	✓					
	Potable water quality achieves EU Drinking Water Regulations (DWR)	1					
	Extend the existing watermain network	✓	√		v		
	Network upgrades	✓			√		
	WTP upgrades	1			1		

4.3 Design Scenarios

The design scenarios for the Masterplan are introduced in Section 2.5, with details pertaining to water supply summarised in Table 8 and Figure 4-1.

Table 8: Wate	r Supply	Assessment	Scenarios
---------------	----------	------------	------------------

Population	Consumption (lpcd)	NRW
Current (2017)	135	45%
2032	120	30%
2047	100	15%


Figure 4-1: Water Availability Summary

60

A worst-case 2047 scenario, where consumption and NRW remained at their current levels with the 2047 population levels, was assessed in the *Water Supply, Wastewater and Stormwater Assessment*. This demand is considered unsustainable and would require significant upgrades to Water supply and Wastewater infrastructure. This Masterplan assumes that the NRW and demand management strategies proposed are implemented and that this worst-case scenario is therefore not applicable.

4.4 Water Supply Network

The existing water supply system includes WTPs, trunk mains (raw water, supply and distribution mains), storage reservoirs and local watermain networks within demand management areas (DMAs), as depicted in Figure 4-2. A hydraulic model was constructed in Bentley WaterCAD for the existing trunk main system to undertake a detailed assessment of the existing network. Refer to the *Water Supply Hydraulic Model Build Report* and *Water Supply, Wastewater and Stormwater Assessment* for details on the model build, assessment criteria, scenario details, results and limitations of the hydraulic models.

Figure 4-2: Mains Arrangement Showing Trunk Mains and Network Components

The hydraulic models were used to assess the existing operating performance of the water supply network as well projected future operating performances for the mid-term (2032) and long-term (2047) scenarios. The models have also been used to assist in developing solutions for improving the network operating performance both for the present and future operation. Detailed water supply maps can be found in Appendix B.

Due to limited availability of field data, the hydraulic models were not calibrated. Therefore, outputs from the models should be considered as high level requiring further work before investment decisions can be made, refer to Section 4.4.7.

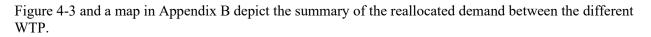
4.4.1 Identified Network Deficiencies

Pressure within the network needs to be great enough to satisfy customer requirements; low pressure in the network may result in ground water seepage into the pipelines with potential contamination issues while significantly high pressure increases leakage rates, may cause bursts or damage to pipelines or plumbing, or wear and tear on fittings including customer apparatus. Pressure reducing valves (PRVs) release pressure from the system when the pressure level becomes too high for safe or efficient operations. To assess minimum and maximum pressure within each DMA, the models were extended from the trunk mains to include DMA network to the highest and lowest elevation properties, respectively. To assess pipelines hydraulic capacity, the main consideration was to keep flow velocity within the pipelines to an appropriate range.

4.4.1.1 Water Availability Assessment

The flow data received for *Water Supply, Wastewater and Stormwater Assessment* indicated that several WTPs receive a reduced flow during lean season. Therefore, a water availability assessment was performed to evaluate the available water yield from the supply sources for each WTP. To ensure consistency of supply to all residents, the flows from different WTP throughout the network were reportioned to accommodate the demand. A summary of the WTP, lean season availability, demand and reallocations to match demand and availability are included in Table 9. Refer to Section 3 for details on the Climate Change Assessment which evaluates the long-term water supply. The existing highest demand values are derived from applying the per capita demands against the population figures or projections; current demands or production at the WTPs may be higher due to inaccuracies in consumption, loss, or apportioning assumptions.

WTP	Lean Season Availability (MLD)	Highest Demand Scenario	Existing Highest Demand (MLD)	Reallocated Highest Demand (MLD)	Summary of Reallocations
Chamgang Old	3.0	Current	6.2	2.6	Demand on WTP exceeded the available water supply, therefore reallocated demand from Bangdu Residents and Bangdu Area Left DMAs to Motihang WTP and Babesa Right, Above Old Highway and Babesa Left DMAs to Chamgang New WTP.
Jungshina	4.5 (assuming 3MLD from Taba as detailed in Section 4.4.2)	2032	2.6	2.6	With an additional supply from the Taba line (see below for details), there is an excess of available supply.
Motihang	7.5	Current	5.5	7.5	There is an excess of available supply. Therefore, reallocated demand from Bangdu Residents, Bangdu Area Left and Changzamtog DMAs to Motihang WTP.
Dechencholing	2.8 (assuming expansion)	2032	2.8	2.6	There is no excess water for distribution. Capable of supplying existing DMAs, plus the Community Supply (northern DMA), Dangrina Proposed and Pamtsho 2 DMAs. Reallocated Pamtsho 1 DMA demand to Taba WTP.
Boreholes	0.7	Current	1.9	0.7	Demand on WTP exceeds the available water supply, therefore reallocated demand above 0.7MLD supply to the Motihang WTP.


Table 9: Water Availability Assessment

Ministry of Infrastructure and Transport

TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Water Supply, Wastewater and Stormwater Masterplan Projects Limited

Thimphu Water Services Masterplan

WTP	Lean Season Availability (MLD)	Highest Demand Scenario	Existing Highest Demand (MLD)	Reallocated Highest Demand (MLD)	Summary of Reallocations
Ngabirongchu	1.9	2047	1.9	1.9	There is sufficient water supply for the demands, except for Babesa Left DMA demands which were reallocated to Chamgang New WTP.
Taba	10.0	2032	7.3	7.5	There is an excess of available supply. Taba WTP to replace Dechencholing supply to Pamtsho 1 DMA.
Babena	1.0	Current	1.0	1.0	There is sufficient water supply for the demands and there is no excess water for distribution.
Chamgang New	3.5	Current	0.8	2.9	There is an excess of available supply. Chamgang New WTP to replace Chamgang Old WTP supply to Babesa Right, Above Old Highway and Babesa Left DMAs.

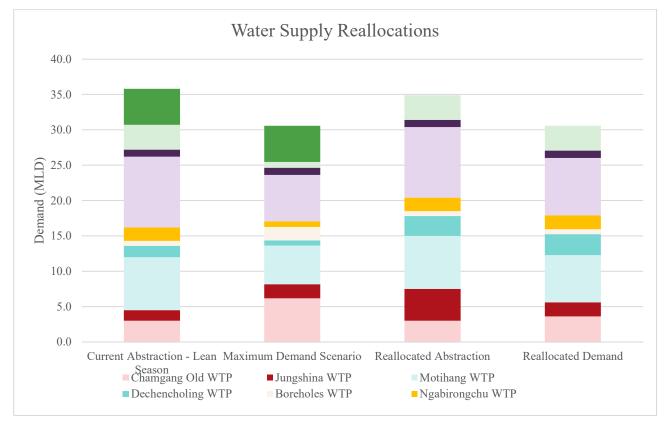
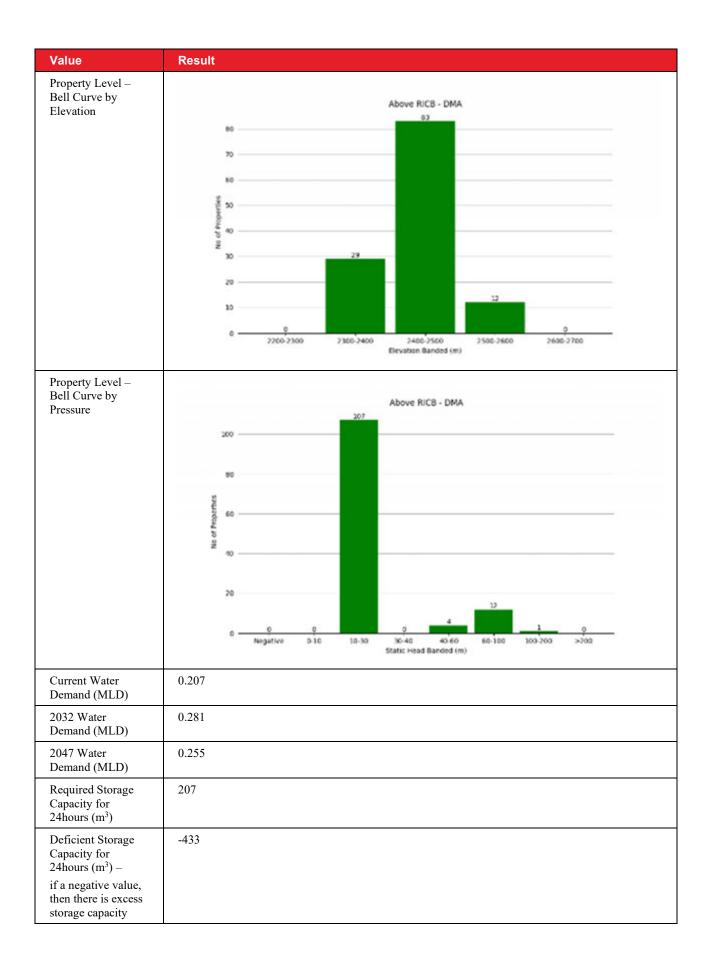


Figure 4-3: DMAs with Reallocated WTP Supply Source

4.4.1.2 Water Distribution Connectivity

To supplement the hydraulic modelling results, data sheets were prepared to summarise the information regarding each DMA and storage reservoir to assist in assessments of the operations and management of the network. The data sheets for the DMAs and storage reservoirs should be assessed together, with details about each component stated for ease of reference and include the details required for high-level network assessments. The data sheets in full are included in Appendix C. An example of the application for utilising the data sheets is detailed for the Above RICB DMA as shown in Table 10.

As identified in Figure 4-4, the hydraulic model outputs indicate that the pressure at the DMA inlet for Above RICB is greater than 100m and a PRV may be necessary to reduce the pressure to acceptable levels. The Above RICB DMA data sheet (presented in Table 10) states that 90% of properties in the DMA have an


elevation of 2,300-2,500m, while only 10% of properties have an elevation above 2,500m. Therefore, the pressure management strategy for this DMA should consider differences for each of the groupings of property elevations. Kuengacholing Tanks 1 and 2 supply this DMA.

The Kuengacholing Tank 1 storage reservoir data sheet is presented in Table 11. The storage reservoir data sheet may be reviewed for details on how storage reservoirs are supplied, which is presented in the elevation profiles which depict the water supply (WTP), adjacent storage reservoirs and minimum and maximum property elevations per DMA. This hydraulic profile can be a useful tool in evaluating how DMAs are supplied and what potential connectivity options or re-zoning may be available as an alternative or to supplement a PRV.

The hydraulic model results in conjunction with these data sheets can provide a targeted approach for future studies and investment. The data sheet can assist in highlighting areas with the largest demands or properties which may be evaluated to improve operations and efficiencies through pressure or velocity management.

Value	Result
DMA Name	Above RICB
Storage Reservoir Name	Kuengacholing Tank 1 Kuengacholing Tank 2
Storage Reservoir Volume (m ³)	320 320
Total Storage Reservoir Volume per DMA (m ³)	640.0
Top Water Level (m)	2592.5 2593.5
Supplying WTP	Motihang WTP
Common Supply Pipe Diameter (mm)	100
Number of Properties	124
Current Population	845
2032 Population	1504
2047 Population	2339
Current Zone Descriptor of Land Use	Low
2047 Zone Descriptor of Land Use	Low
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2390
Property Level - Highest Elevation (m)	2540

Table 10: DMA Data Sheet for Above RICB

Table 11: Storage Reservo Value	ir Data Sheet for Kuengacholing Tank 1 Result				
Storage Reservoir Name	Kuengacholing Tank 1				
Downstream Storage Reservoir(s)	None				
Adjacent Reservoir(s)	Kuengacholing Tank 2				
Downstream DMA(s)	Upper Motihang				
	Kawajangsa and Zilukha				
	Town Area 1				
	Town Area 2				
WTP Supplying Storage Reservoir	Motihang WTP				
Hydraulic Profile Diagram	Elevation Profile - Motihang WTP				
Number of Julet Bines	Allow KCI DMA free 105 DMA free free 1 6 2				
Number of Inlet Pipes	1				
Diameter of Inlet Pipes (mm)	100				
Number of Outlet Pipes	1				
Diameter of Outlet Pipes (mm)	80				
Operations	8am-11am and 3pm-6pm				
Top Water Elevation (m)	2592.5				
Bottom Water Elevation (m)	2589				
Storage Reservoir Volume (m ³)	320				
Storage Reservoir Material	RCC_circular				

L.L. ~ ...

Network Deficiencies – Pressure and Flow 4.4.1.3

The hydraulic modelling results of this assessment indicate that the pressure in the network is generally high with an average network pressure of approximately 84m. High pressure up to approximately 400m is

recorded which will require further investigations to monitor pressure and confirm installation of PRVs. The locations of high pressure (>100m for the current scenario) and PRVs are depicted in Figure 4-4. Full results for pressure for the current and future scenarios are included in Appendix D.

The minimum average supply pressure within the existing network at DMA demand offtakes is estimated at 1.15m, downstream of the Zilukha Sintex Tank 2 compared to a minimum desirable pressure of 10m. Other DMA areas of low pressure in the current scenario are shown in Figure 4-4. There are also areas with results showing negative pressure which is an indication that the system in its current state will not be able to supply these areas and therefore pumping will be required at the locations depicted in Figure 4-4. Full results for velocities for the current and future scenarios are included in Appendix D.

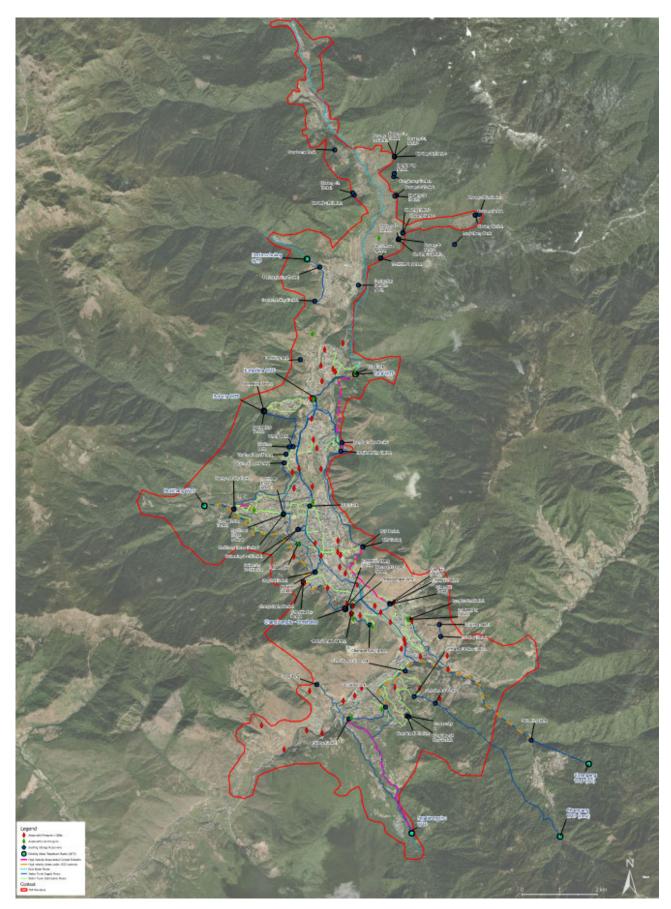


Figure 4-4: Identified Network Pressure Deficiencies, Velocity Deficiencies and Proposed Pumps and Valves

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International
 Water Supply, Wastewater and Stormwater Masterplan

 Projects Limited
 Vater Supply

The trunk mains capacity was assessed using average pipeline velocities under the average flow conditions. A range of 0.5m/s to 1m/s was considered as desirable. Velocities below this range has the potential to impact on water quality due to water age while higher velocities have the potential remobilise sediments resulting in discolouration.

Pipelines with velocities greater than 3m/s in the current and 2032 scenario are depicted in Figure 4-4. Pipelines with these high velocities require further investigations through assessing flow meter recordings to confirm the velocity results and potential investment in pipe upsizing if confirmed. Full results for velocities for the current and future scenarios are included in Appendix D.

4.4.2 Upgrades to the Existing Network

Potential network improvements were identified to meet the design requirements, but these will require further detailed investigations before investment decisions should be made. There are potential improvements to reallocation of raw water, pressure management, flow control, network monitoring and firefighting capabilities. These are discussed in the sections below. A summary of the locations of the proposed upgrades on the existing network are shown in Figure 4-5.

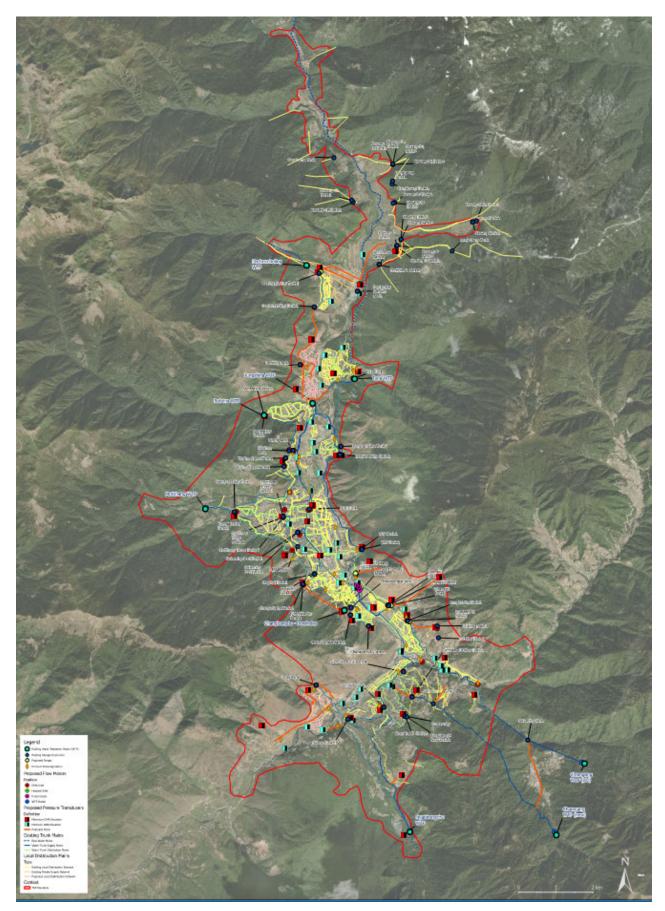


Figure 4-5: Upgrades to the Existing Network

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International
 Water Supply, Wastewater and Stormwater Masterplan

 Projects Limited
 Projects Limited

Reallocation of Raw Water Supply to Jungshina WTP

The Jungshina WTP has a water supply deficit relative to the demand and hydraulic capacity of the WTP, which are intensified by competing other users such as agriculture. Raw water supply from the main which supplies Taba WTP could be rerouted to increase the availability of raw water to Jungshina WTP. As indicated by TT, the existing Taba WTP raw water trunk main has capacity for 13MLD, but Taba WTP only treats 10MLD. Therefore, the remaining 3MLD could be supplied to Jungshina WTP through a 150-millimetre (mm) diameter main, which runs from Taba WTP across the Wang Chhu, terminating by Jungshina WTP. Through extending this line approximately 600m to Jungshina WTP and reconfiguring the pipework at Taba WTP to divert 3MLD into this line, the availability of raw water to Jungshina WTP could be significantly increased particularly in the lean season. This opportunity is depicted in Figure 4-6.

Figure 4-6: Opportunity to Reroute Raw Water from Taba Raw Water Trunk Main to Jungshina WTP

Pressure Management

High Pressure

Pressure requirements vary and consideration needs to be given to the type of buildings supplied; for example, an area with tall buildings will require more pressure than areas with single story buildings. High pressure may also be required in a trunk main to meet pressure requirements further downstream; for example, where a trunk main is routed through a valley to a higher elevation downstream. Although the hydraulic model has identified locations of high pressure, it would be prudent to understand the pressure requirements for each DMA and building and where very high pressure is not required, pressure management with PRVs will be recommended. PRVs are designed to maintain a pre-set pressure in the trunk main downstream of the valve. Locations identified in the model with very high pressure (above 100m) are shown in Figure 4-4. The locations for installation of approximately 30 PRVs to mitigate the very high pressure are depicted in Figure 4-5. The PRV locations are subject to further investigations such as pressure testing.

There is not much difference in pressure between the current and future (2032 and 2047) operating scenarios and the PRV locations identified will be applicable to all scenarios.

Low Pressure

Areas with low or negative pressure were identified in the model and are included in Figure 4-4. The low pressure is largely due to high elevation of these areas and are an indication of high risk of loss of supply and in the case of negative pressure or insufficient capacity to supply these areas. To manage pressure, booster pump stations to increase the local pressure to sufficient levels will be required due to insufficient head to deliver water supply to these areas. To increase the head, pumping is required. Locations of proposed booster pump stations are depicted in Figure 4-5. Further investigations such as pressure testing is required to verify whether the areas experience low pressure and confirm booster pump station locations.

Network Monitoring

To ensure an uninterrupted water supply, constant network monitoring for flow, pressure, water quality and storage reservoir water levels are recommended.

Flow Meters

Flow meters should be installed for general flow measurement, leakage detection and customer charging. Limited information was provided on existing flow meters on the network, and it was reported by TT that many of these are defunct or are not collecting data. On this basis, flow meter installations are recommended at the following locations in the network, as depicted in Figure 4-5, for improved efficiency and management:

- At the outlet of WTPs, to measure outflow from the WTP and therefore production capacity.
- At the outlet of pumps, to record pumping rates and control pump operation.
- At the inlet to DMAs, to allow for local management of the supply area including leakage control.
- Customer meters for charging domestic, commercial and industrial supplies (not depicted due to quantity).

Consideration should be given to connecting the flow meters to a suitable telemetry system like Supervisory Control and Data Acquisition (SCADA) to allow for remote monitoring of flows and burst dictation.

Pressure Transducers

Pressure monitoring will be required for each pressure area of the network. This should be provided by use of pressure monitors (transducers) installed directly onto water trunk mains or fire hydrants. The pressure transducers should send a signal to a suitable telemetry system like SCADA. Pressure transducers should be installed at the maximum and minimum elevations within each DMA as depicted in Figure 4-5. There are insufficient fire hydrants in the network (refer to Cater for Firefighting Section for additional details), therefore new fire hydrants may be required to monitor pressure at the identified locations.

Quality Monitoring

Monitoring of chlorine residual is required to identify contamination in the water system downstream of the WTP and ensure that water remains safe for consumption. This can be achieved through regular sampling and testing, or online monitoring at key locations throughout the network. Online monitors linked to an alarm system can provide fast notification of a potential contamination event, minimising the risk to public health. Monitors are generally placed immediately downstream of storage reservoirs where water may have been stored for relatively long periods and residual chlorine is subject to decay.

Storage Reservoir Water Levels

Water levels in storage reservoirs should be recorded through level sensors. This water level data can assist with operation of the water supply network, providing warnings for low reservoir levels and enabling the operator to manage water distribution across the network in an effective and efficient manner.

The data can also be used to track filling and emptying rates of the storage reservoirs and sudden changes to normal operations.

Water Supply Storage

Water supply storage within the network is required to prevent a loss of supply during planned or unplanned interruptions. Typically, disruptions will only last a few hours, but major events such as earthquakes and landslides can impact supply while repairs are undertaken. The existing TT water supply system is providing approximately 10.5ML of storage which represents 8 hours of Thimphu's daily water demand. International best practice is for water systems in hazard prone areas to provide at least 48 hours of storage, which is approximately 61ML of storage with current demands and 49ML with 2047 demands.

Future demand in 2047 is expected to be 24.4MLD, considering population growth, the expansion of the public network into areas on private or community supplies and the reduction in per capita water usage (refer to Section 4.4.6). A significant increase in storage volume is required to ensure reliability and resilience of the water supply.

Achieving the required storage volume for 48hours of supply should primarily be supplied in new strategic, consolidated storage reservoirs by the WTPs. Upgrades or upsizing of storage reservoirs throughout the network may also be provided. Strategic, centrally located, some consolidated locations with existing storage reservoirs which could be suitable for upgrade or upsizing include Motihang Three Tanks and the Swimming Pool Tanks. To further consolidate and size storage reservoirs, peak demands, fire flows and demand curves should be evaluated against the demand on each storage reservoir under current and future conditions.

To mitigate water quality issues, water circulation and water flow should be included in the design parameters. Disinfectant (chlorine) residual levels must also be maintained throughout the components of the system to ensure the water quality is free of pathogens or other contaminants. The residence time of water within storage reservoirs should be managed to minimise the age of water within the storage reservoirs.

Firefighting Capabilities

Having a sufficient and reliable supply of water for firefighting is crucial in ensuring the safety of people's lives and protecting property from the dangers of fire. Water is curtailed during certain periods of the days to different neighbourhoods to provide a more equitable supply to customers across the city. As a result, the fire department are unable to rely on the availability of water in any location in the event of a fire. Instead, water is tankered from dedicated fire storage reservoirs distributed across the city to the location of the fire.

A firefighting flow analysis was undertaken using the existing scenario hydraulic model. There was minimal information on existing fire hydrants in the Geographic Information System (GIS) files; the fire hydrant data provided includes the locations of 81 hydrants throughout the TSP study extents with no specifications stated. A high-level approach for firefighting flow analysis using the WaterCAD's software capability was used in the analysis. This approach tests every pressure node in the model for capability to supply a pre-assigned firefighting demand while maintain pre-assigned pressure constraints at the node and elsewhere within the network. Details of how this analysis work are included in the *Water Supply Hydraulic Model Build Report*.

Using the above approach, the model was tested iteratively for reducing firefighting demands of 35L/s, 25L/s and 7L/s with pressure constraints of 10m and 5m at the operating node and elsewhere in the network, respectively. For all scenarios considered the hydraulic model was unable to run successfully indicating a high risk that the existing water supply network does not have sufficient hydraulic capacity to cater for firefighting demand. To mitigate against this risk, the following will be recommended:

- An inventory of all fire hydrants and updating of network records on location, nature and condition of each.
- Review of the fire hydrants coverage against prevailing standards or good practice.
- Design and upgrade of the firefighting system to prevailing or good practice standards. It should be noted here that some local pressure boosting may be required for the low pressure / high elevation areas of the network.

Fire hydrants are required for the Fire Department to abstract water from the network. All properties relying on public watermains for fire protection should be located within a maximum distance of a fire hydrant to ensure the Fire Department can connect a hose to it. This maximum distance can vary by jurisdiction but is typically between 45 and 90m (along the line of the hose). Hydrant spacing for Thimphu should be agreed with the Fire Department and installed as required to provide necessary coverage. Based on current information received, less than 1% of buildings are within 90m radius of an existing fire hydrant and less than 30% are within a 200m radius.

Protection of Water Mains

Trunk watermains convey water from intake structures to WTPs and from WTPs to storage reservoirs and are the key pipelines for providing potable water throughout the TSP study extents. Reliability and resilience of the water supply system is dependent on these strategic pipelines remaining operational at all times.

Many of these trunk mains pass through areas identified as landslide hazard zones and depicted in Figure 4-7 and summarised in Table 12. Trunk mains in landslide hazard zones are at higher risk of damage which could result in significant service interruptions. This risk is exaggerated where pipelines are located above ground where they also are exposed to impact damage. Further analysis is required to understand the extent of the risk, inform measures to reduce the risk of damage, or increase the resilience of the system through diversion or duplication along these routes.

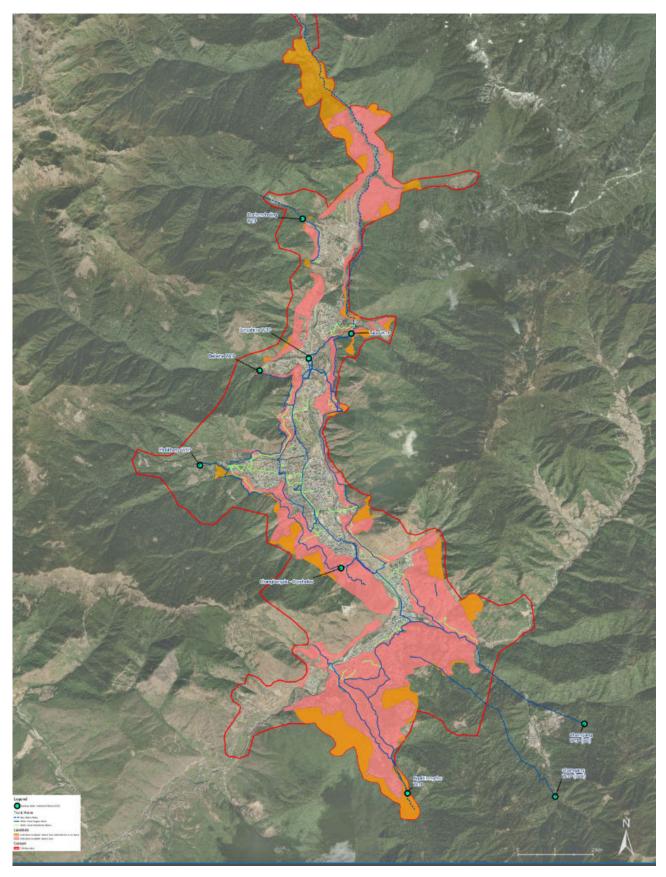


Figure 4-7: Water Mains Relative to Landslide Hazard Zones

Ministry of Infrastructure and TransportThimphu Water Services MasterplanTWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup InternationalWater Supply, Wastewater and Stormwater MasterplanProjects LimitedProject Services

Table 12: Length of Raw Water and Supply Main Network in Landslide Hazard Zones

Water Network	Length Outside Landslide Hazard Zone Included in Total Length Effected (km)	Estimated Total Length Effected (km)
Raw Water	3.1	9.6
Supply Main	12.0	57.5

Local distribution watermains are often laid in stormwater drains and culverts. This increases the risk of damage to the watermain from accidental impact by a vehicle, or longer-term deterioration from flowing water as well as risk of contamination. The presence of the watermain also reduces the conveyance capacity if the drain. Watermains located in these drains should be diverted into purpose-built trenches within the road reserve to ensure ease of access for operations and maintenance.

Flow Control

There is limited information on the locations and specifically the types of the valves in the system to consider the adequacy of these to the network operation. Assuming a worst-case scenario that records are not available, it is recommended that site investigations are undertaken to establish locations, nature and conditions of the existing valves and updating the network data to include results of these surveys.

4.4.3 Proposed Future Connections

Thimphu Thromde currently supplies approximately 85% of residents within the study extents. Private or community supplies provide water to the remaining residents. The private or community supplies are typically untreated and have water quality, availability and distribution issues. A key objective of this Masterplan is to provide safe, reliable drinking water to all residents within Thimphu Thromde, therefore strategies to connect to the following private or community supplied DMAs were evaluated and are summarised in Table 13 and presented in Figure 4-5. All DMAs are proposed to be connected by 2032, except for Rama which will be connected as part of the development of the Southern Extension which is considered by 2047 in the modelling. At the four locations where booster pumping was identified as required to enable supply to these proposed development areas, no further work was carried to design the booster pump stations.

DMA	Proposed WTP Supply	Network Modifications	Notes
Changiji 2	Taba	Connection from Changiji Tanks (2327mAOD) to the Changiji 2 DMA (2594mAOD).	Booster pumping required.
Community Supply	Dechencholing	Connection from Dechencholing Tank 1 (2522mAOD) to Community Supply DMA (2568mAOD).	Booster pumping required.
Dangrina Proposed	Dechencholing	Connection from Dechencholing Tank 1 (2522mAOD) to Dangrina Proposed DMA (2515mAOD).	Pressure from existing network may be sufficient. Additional investigations required.
Gangchey Nyezergang	Ngabirongchu	Connection to 250mm diameter (pipe diameter assumed) from Ngabirongchu WTP.	Pressure up to 404m, PRV required.
Lubding	Chamgang Old	Connection from Lungtenphu Tanks (2366mAOD) to Lubding DMA (2647mAOD).	Booster pumping required to supply storage reservoir. Additional investigations to considered alternative location for storage reservoir which may reduce pumping head.
Pamtsho 1	Dechencholing	Client provided proposed connection from the Dechencholing Tank 2 to Pamtsho Tank via a 200mm main.	Supply pressure at highest elevation circa -104m, booster pump station may be required. Additional investigations recommended.

Table 13: Proposed Future Connections

Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

DMA	Proposed WTP Supply	Network Modifications	Notes
Pamtsho 2	Dechencholing	Supply from Pamtsho Tank.	Supply pressure circa 106m. PRV will be required.
Rama (2047)	Ngabirongchu	Connection to 150mm diameter from Ngabirongchu WTP to Debsi Tank.	Supply pressure in the range 278m to 415m. PRV required.
Serbithang	Ngabirongchu	Connection to 100/150mm diameter (pipe diameter assumed) from Ngabirongchu WTP.	Supply pressure up to 280m, PRV required.
Workshop	Chamgang Old	Connection to 250mm diameter from Olakha 2 (tee from Break Pressure Tank downstream of Chamgang Old WTP) to Simtokha Tank Danak.	Supply pressure up to 187m, PRV required.
YHS 2	Taba	Connection to 100mm diameter from Taba WTP to Bhutan Hospital or 150mm diameter to Changiji Tanks.	Supply to high elevation properties circa -115m. Booster pumping required.
			Pressure to low elevation properties circa 125m. PRV required.

4.4.4 Future Scenarios

Future scenarios were evaluated for the mid-term (2032) and long-term (2047) timeframes in alignment with the TSP.

2032 Scenario

The baseline model for the existing network was modified to include projected future connections (Table 13) as well as changes in water demand. The network was also modified to allow for the rezoning of WTP supplies as informed by the WTP reallocation assessment in Section 4.4.1.1. In summary, the following changes were made to the baseline model:

- Addition of proposed future connections to DMAs currently supplied by community or private networks.
- Addition of 200mm diameter trunk main from Dangrina Tank 2 to Pamtsho Tank as advised by client to be a planned future installation.
- Reallocated supply to the Babesa Left DMA from Chamgang Old WTP to Chamgang New WTP, as detailed in the Availability Assessment in Section 4.4.1.1.
- Reallocated supply to Bangdu Residents and Bangdu Area (Left) from Chamgang Old WTP to Motihang WTP, as detailed in the Availability Assessment in Section 4.4.1.1.
- Connection between Chamgang New WTP and Chamgang Old WTP upstream of the Break Pressure Tank to allow for the reallocation of demand from Chamgang Old WTP to Chamgang New WTP. The route was assessed for hydraulic feasibility and further assessment is required to confirm the route from a topography and construction perspective.
- Updating demands to reflect change in water use and population growth.

The updated model was used to assess future performance for the 2032 operating scenario and results of the hydraulic assessments have not shown any significant differences in operating performances to those of the existing system. Results for pipeline velocities for the current and 2032 scenario are shown in Figure 4-4.

This could be an indication of the network robustness hydraulically of the existing trunk main system to accommodate the projected future demands without need for any major upgrades. Results for average pressure and velocity in the current and future scenarios are included in Appendix D.

2047 Scenario

Demands in the 2032 baseline model were updated to projected 2047 demands to create a model for this scenario. Results from running this model have not indicated any adverse impacts from changes in demand.

2047 Scenario - Chamgang Old WTP Decommissioned

The 2047 scenario was utilised as a baseline for this evaluation.

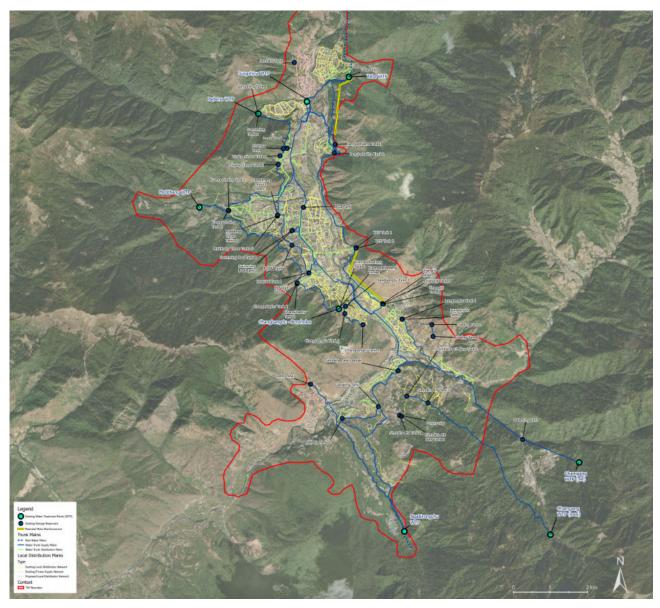
The Chamgang Old WTP currently has water supply availability issues which pose a risk to the water supply and are likely to worsen when considering the impacts of climate change on these smaller water sources (refer to Section 3 Climate Change Resilience Assessment for further details). Therefore, a future scenario where the Chamgang Old WTP is out of commission was assessed to evaluate the water supply availability and considerations for necessary infrastructure reconfiguration or routing to maintain the water supply under this condition.

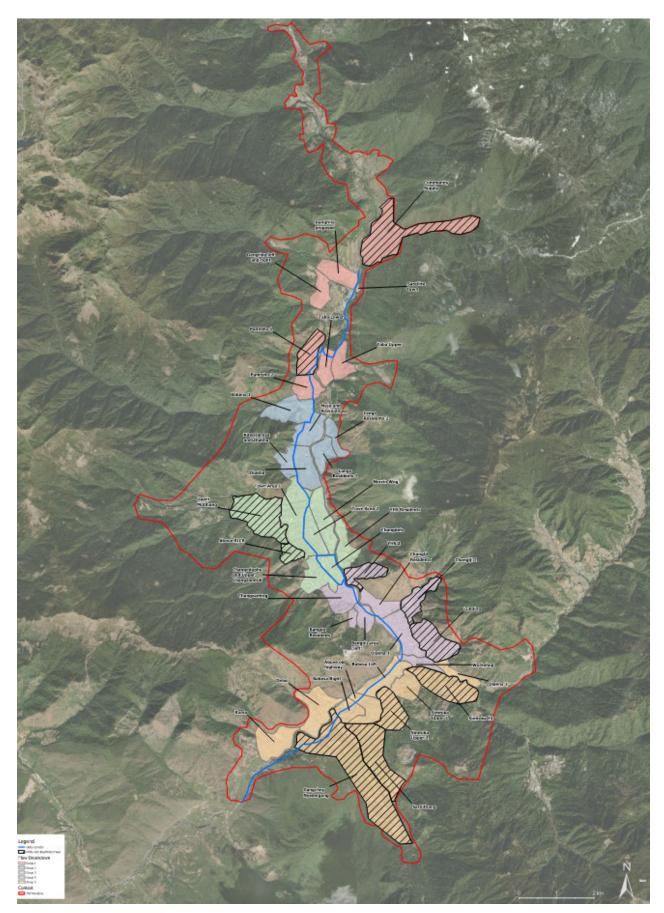
Two aspects were considered in this assessment, resource availability and network hydraulic capacity. Regarding resource availability, the demand on Chamgang Old WTP is 2.6MLD, therefore the available excess supply from other WTP in the network was evaluated to cover this demand. An initial assessment to cover the demand based on water availability indicates that the demand could be reallocated to Chamgang New WTP and Taba WTP, which have excess capacity and water availability, as summarised in Table 14.

WTP	Lean Season Availability (MLD)	Demand on WTP (MLD)	Reallocated Demand on WTP (MLD)	Summary of Reallocations
Chamgang Old	None in this scenario	2.6	0	All 2.6MLD from Chamgang Old WTP reallocated to Taba WTP and Chamgang New WTP.
Ngabirongchu	1.9	1.9	1.9	No demand reallocations. However, the Rama DMA demand is 0.6MLD, therefore if this expansion does not occur 0.6MLD would be available from Ngabirongchu WTP.
Taba	10.0	7.5	9.5	There is an excess of available supply. Therefore reallocated 2.0MLD of demand currently supplied by Chamgang Old WTP to Taba WTP.
Chamgang New	3.5	2.9	3.5	There is an excess of available supply. Therefore reallocated 0.6MLD of demand currently supplied by Chamgang Old WTP to Chamgang New WTP.

Table 14: Water Availability Assessment without Chamgang Old WTP

A high-level hydraulic assessment indicated a potential solution for rezoning which involves reinforcement of sections of the trunk mains from Taba WTP to the YHS Tanks which are currently indicated as operating beyond their hydraulic capacity. Local connections to complete the rezoning will also be required. The proposed sections of trunk mains reinforcement are shown in Figure 4-8. These proposed mains reinforcements were not included in the model. Further detailed investigations will be required before this solution can be confirmed, which may include confirming the results of the model through pressure and flow monitoring and calibration, route assessment for the main and hydraulic assessments of the proposed route.




Figure 4-8: Potential Mains Reinforcement for Rezoning Chamgang Old WTP Demand to Taba WTP

4.4.5 Long-term Water Network Strategy

A high-level feasibility study for the route of a shared-utility corridor primarily between telecoms, electric and water utilities was performed for the TSP. The purpose of the utility corridor is to reduce issues with land procurement and aid in maintenance. The existing utility infrastructure was evaluated to prioritise a location and select a suitable route for all utilities. Figure 4-9 depicts two alternatives for the utility corridor.

The long-term water strategy looks beyond the TSP timeframe of 2047, where the aspiration is for water to be supplied from two WTP only, the new Begana WTP (20MLD), as identified by MoIT (*Feasibility Study of Begana Integrated Multipurpose Small Hydropower Project*) and Taba WTP (10MLD). The future operating scenario was assessed to evaluate whether a Begana-Rama trunk main within the utility corridor could supply all DMAs if all other WTPs are abandoned.

A high-level hydraulic assessment was undertaken of the strategic trunk main system utilising the utility corridor alignment. This assumed an upstream driving head equivalent to that existing in the Taba Tank (2532mAOD) with the flow rate progressively decreasing north to south to account for supply to upstream DMAs. Figure 4-9 depicts the flow breakdown by DMAs included in the assessment which is represented by the different colours.

Figure 4-9: Utility Corridor with Flow Breakdown and DMAs with Insufficient Head from Begana-Rama Trunk Main Based on this approach, it is not feasible to transfer treated water from the Begana WTP and Taba WTP to all DMAs using only a gravity-fed system installed within the utility corridor. The DMAs depicted as hatched in Figure 4-9 and described in Table 15 have insufficient head to supply the highest elevation properties within these DMAs. The DMAs identified in Table 15 require further evaluation to determine the best suitable supply in the long-term water network strategy scenario. Potential supply opportunities for the DMAs with insufficient head from the Begana-Rama trunk main may include booster pumps to raise the available head (Option A) or consideration of maintaining the existing WTP which supplies the DMAs (Option B). The high-level hydraulic calculations and summary are included in Appendix E.

DMA	Alternative Supply to	Alternative Supply to Begana-Rama Trunk Main		
	Option A: Pumping Head Requirement (m)			
Above RICB	35	Motihang WTP	0.30	
Changiji 2	90	Assume could maintain supply directly from Taba WTP through Changiji Tank 1, Changiji Tank 2, Changiji Thank 3 instead of from Begana-Rama trunk main	0.45	
Community Supply	40	Dechencholing WTP (through Dechencholing Tank 1)	0.31	
Gangchey Nyezergang	157	Ngabirongchu WTP	0.35	
Lubding	126	Chamgang Old WTP (through Lungtenphu Tanks)	0.37	
Pamtsho 1	34	Assume could maintain supply directly from Taba WTP or Dechencholing WTP through Pamtsho Tank instead of from Begana-Rama trunk main	0.57	
Serbithang	146	Ngabirongchu WTP	0.10	
Simtokha Upper 2	52	Chamgang New WTP (Simtokha E4 Tank 3)	0.20	
Simtokha E4	8	Chamgang New WTP	0.24	
Upper Motihang	82	Motihang WTP (through Kuengacholing Tank 1 & 2)	1.35	
YHS 2	17	Assume could maintain supply directly from Taba WTP through Pamtsho Tank instead of from Begana-Rama trunk main	0.18	

Table 15: Alternative Supplies to	DMAs with Insufficient Head from the	Begana-Rama Trunk Main
Tuble 10. Alternative Supplies to	Binko with mounterior neural nom the	Beguna Rama Trank man

4.4.6 Water Management

The water supply strategy aims to create opportunity through water systems which support sustainable growth within the city. This includes cultivating a balance between managing non-revenue water losses, such as leakage, and water demand to ensure adequate water for living while protecting natural water resources. Water management strategies include reducing water usage through leakage and other non-revenue water reductions and reductions in per capita consumption were evaluated.

Reduction in Non-revenue Water

Water Loss Audits recently undertaken in Thimphu show losses in the network of over 50% which arise from leakage, illegal connections and metering inaccuracies.

This is significantly higher than internationally accepted rates (typically <20%). The current losses are the primary contributor to water shortages for customers as the existing water sources and WTPs have capacity to deliver current water demands.

Reducing water losses has considerable benefits for the operation of the water system, including cost savings, improved system integrity and preventing third party property damage. Reducing water losses result in the need for less water to be abstracted from rivers and streams which reduces the environmental impact of water abstraction, particularly during low flow periods. Operational costs at WTPs will reduce due to reduced flows and operating times. Further operational cost savings will be achieved where water is pumped through the network. Capital expenditure savings will be achieved as upgrades to water supply infrastructure (WTPs, reservoirs, pipelines) will be less substantial or not required at all to meet current demand.

It is generally accepted that it is not economically viable to completely eliminate water losses from the system, although improvements in metering technologies are continuing to help lower water loss targets. Water utilities being able to demonstrate a reduction in water losses is also essential for successfully promoting customers to reduce their potable demand.

World Bank Group and Water Management International have prepared the *Bhutan Water Status Assessment Report (2023)* and *Draft Roadmap to NRW Management (25 January 2023)*. The roadmap provides a set of strategies and actions targeting NRW reduction. These include capacity building, institutional strengthening, reducing commercial losses and reducing real losses. Many of the recommendations of this roadmap align with those in this Masterplan. In particular the requirements for new SCADA systems to monitor flow and pressure throughout the network is essential to calibrate the hydraulic model and improve the reliability of the results, which can help identify areas with high leakage or bursts, to confirm areas which require investment prior to committing major capital expenditure. Reducing losses is also fundamental to the proposed design criteria associated with water demand calculations throughout the water supply system.

Close coordination between the outcomes from this Masterplan and the Roadmap implementation is required to maintain consistency and efficiency of future work.

Water Demand Management

Water Demand Management (WDM) is a strategy for managing water resources, which focuses on reducing water demand by encouraging efficient usage. This is achieved by offering targeted incentives that promote fair and sustainable water usage.

Current water usage (excluding losses) is 135lpcd, as provided by TT at the 17 October 2022 Standard Workshops and detailed in the *Initial Options Analysis – Constraints and Opportunities* Report. As availability and reliability of potable water is improved, there is a high potential for increases in water usage. Although water consumption in many developed cities is >150lpcd, reducing this value is a key strategy for water utilities worldwide. The World Business Council for Sustainable Development, World Economic Forum and 2030 Water Resources Group have launched the 50L Home Coalition to reform domestic urban water management with an aim of reducing consumption to 50lpcd.

WDM is a multi-pronged approach considering social, economic, technical and environmental factors. Measures which will contribute to WDM include:

- Water saving devices (low-flush toilets, low flow shower heads and low-flow taps)
- Water efficient landscape design
- Efficient irrigation practices, including rainwater harvesting
- Water reuse
- Pressure management
- Smart metering
- Tariff systems

In addition, a strong consistent, education message is required to underpin all other WDM activities. New building standards, education programmes and technical infrastructure solutions need to be developed and implemented to reduce water consumption throughout Thimphu.

4.4.7 Recommendations on Hydraulic Model Further Developments

This study has successfully created a "digital twin" hydraulic model for the trunk main system including all DMA supplies and critical pressure points within the DMAs. Although the model can be used straight away as a high-level decision-making tool and for assessing operational performance, additional work will be required to further develop the model and increase the level of confidence in the outputs from the tool. The following next steps are recommended:

- The model was constructed based on Arup's best interpretation of the water supply network arrangement and connectivity from the GIS files and TT schematics provided. The client should review the model and combined schematic for network arrangement and connectivity and identify any anomalies to be addressed in the next revision of the model.
- The specialist modelling software, Bentley's WaterCAD, was utilised to construct the water supply hydraulic model. Export files will be provided to the client in the EPANET software format, which is a free software to download. It is recommended that the client appoint a dedicated holder of the master files to avoid unauthorised changes to the files which may be difficult to be accounted. Any changes to the master copy are to be logged and an appropriate version control applied. If training and upskilling in the use of the software is required, Arup would be able to assist MoIT with this process.
- A number of assumptions were made to fill in data gaps. These are recorded in the Assumptions Register (Appendix to the *Water Supply Hydraulic Model Build Report*), in the hydraulic model metadata and in the GIS shapefile metadata. MoIT should review these assumptions and where information is available, identify these to be addressed in the next revision of the model.
- Hydraulic model calibration is a critical step in any hydraulic model process and it involves adjusting the hydraulic model to match field data. This process was not completed due to the absence of adequate field data. Future flow and pressure monitoring will be required to inform the model calibration. Flow monitoring should be prioritised at outlets of all WTPs and storage reservoirs and at the inlets to DMAs. Pressure monitoring should be prioritised at the pressure critical points identified in Section 4.4.2 and GIS files.
- Flow and pressure monitoring could be collected via temporary installations which are deployed for a limited time to capture model calibration data, via permanent installations connected to a telemetry system such as SCADA or a combination of the two.
- Further development of the hydraulic model from Steady State to Extended Period Simulation is recommended. To achieve this, more detailed demand studies will be required to develop demand profiles to understand any daily and seasonal variations in water use.

4.5 Water Treatment Plants

There are nine existing or proposed WTPs operated by Thimphu Thromde (refer to Section 4.4). These supply approximately 85% of the population within the TSP study extents, the remainder supplied by private or community supplies. The WTPs were assessed in the *Water Supply, Wastewater and Stormwater Assessment* regarding their current conditions, if the systems are hydraulically stressed and if the systems are able to cater current and future (2032 and 2047) scenarios of water demand. Based on the Assessment, operational best practices, SCADA upgrades and WTP components upgrades were identified. Justifications are provided in deciding to proceed or not with these upgrades as well as the required monitoring to ensure treatment performance is achieved and to highlight the risks associated.

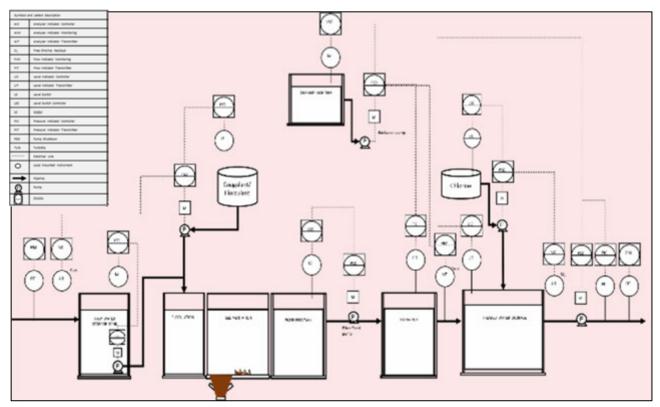
4.5.1 Upgrades to Existing WTPs

The hydraulic assessment (from the *Water Supply, Wastewater and Stormwater Assessment)* indicated any required upgrades for each WTP. These upgrades were further evaluated holistically considering the lean season availability of the water source for each WTP (refer to Section 4.4.1.1), the proposed highest demand scenario as well as the current operational performance of the WTP.

In addition, the performance review workshop held on 5 May 2023 informed the appraisal. Therefore, some upgrades, as discussed in the following subsections, were not pursued when the hydraulic capacity was limited.

4.5.1.1 SCADA Upgrades

Based on the assessment, the following issues are generally common to most WTPs:


• Flow meters are either defunct or not provided.

- Online water quality meters are not installed.
- There is no SCADA monitoring for parameters nor SCADA control of pumps.

Developing a comprehensive SCADA strategy and plan, along with appropriate training and recruitment for SCADA operation, and establishing SCADA monitoring stations can greatly enhance the efficiency, safety and reliability of WTP operations. SCADA plays a vital role in the safe operation of WTPs and serves as a critical component in meeting water objectives. By implementing a SCADA system, WTPs gain real-time monitoring and control capabilities over various processes and equipment within the WTP. This enables operators to remotely monitor and control the operation of pumps, valves, chemical dosing systems and other critical components, ensuring optimal performance and responsiveness to changing conditions.

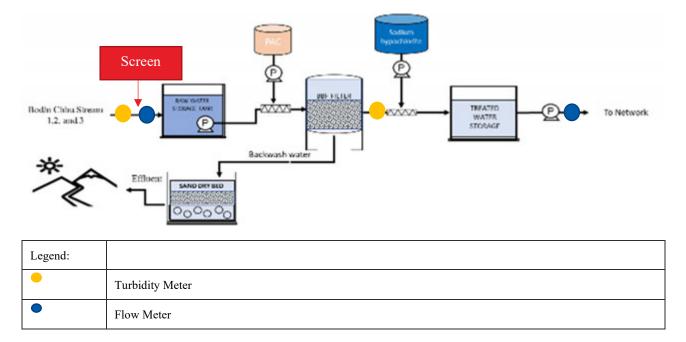
SCADA systems can enhance operational efficiency by automating routine tasks, optimizing resource allocation, and streamlining workflow processes. This leads to cost savings, improved energy efficiency and optimised chemical usage, ultimately contributing to sustainable water management practices.

Therefore, the following upgrades are recommended for all the WTPs as applicable. Figure 4-10 shows a general concept for SCADA upgrades. Not all controls are applicable to all WTPs, for example, some WTPs do not have raw water storage pumps.

Figure 4-10: General Concept for SCADA Upgrades

All online meters and operation of pumps are recommended to be included in the SCADA system to allow operators to monitor each WTP and control pumps, as well as to monitor flows entering and leaving the WTP which can assist in calculating losses. These upgrades would require assessment of the existing electrical system load capacity of the WTPs to confirm adequacy. The following SCADA upgrades are suggested:

- Install online meters such as inlet and outlet flow meters, inlet and outlet turbidity meters, free chlorine residual meters and filter pressure meters.
- Install other online water quality meters and corresponding SCADA monitoring as needed based on the variability of values for the parameters of concern identified from the raw water quality monitoring as mentioned in Section 4.5.3.


- Provide automatic control programs of chemical dosing pumps in proportion to turbidity and free chlorine residual. This automatic control may require a change of dosing pumps from fixed speed to variable frequency drive pumps and installation of tank level switches.
- Provide automatic control programs for raw water pumps, distribution pumps, backwash water pumps, dosing pumps and filter feed pumps based on storage tank levels. This may also require installation of storage tank level switches or transmitters.
- Provide automatic control programs for distribution pumps from Jungshina WTP to run based on network pressure.
- Provide automatic control programs for backwashing operation regimes based on the filter pressure, turbidity and backwashing duration and frequency.
- Provide all run and stop status of pumps in SCADA.

4.5.1.2 Chamgang Old WTP

A summary of major and minor component recommendations for Chamgang Old WTP are presented in Table 16. Figure 4-11 depicts the recommendations and quality monitoring locations and parameters.

Table 16.	Chamgang	Ungrades	and Monitoring
Table 10.	Changang	opyraues	and womening

Upgrades/Monitoring	WTP Components	Basis
Major	·	
None		
Minor		
Monitor turbidity to check BioBall Filter (BBF) performance especially at higher flows.		Highest demand is 2.6MLD. Four BBF units (no standby) can treat 3MLD.
Install screen on the intake structure.		Prevent frequent blockages that affect the production capacity.

Figure 4-11: Chamgang Old WTPs Recommendations

Based on a water demand of 2.6MLD and performance review with TT, no upgrades to the BBFs are proposed. The hydraulic assessment indicated that the combined capacity of the four filters can meet the proposed demand 2.6MLD, but there would be no standby BBF. TT also confirmed the filters function well up to 6.5MLD. Based on the data provided, the WTP is not experiencing much high turbidity, but the data is also limited to confirm the variability in turbidity and performance especially during higher flows and turbidity. Therefore, close monitoring should be undertaken to ensure the filters continue to meet treatment requirements, particularly during periods of greater flow and turbidity through the WTP.

4.5.1.3 Jungshina WTP

A summary of major and minor component recommendations for Jungshina WTP are presented in Table 17.

Table 17: Jungshina WTP Upgrades and Monitoring

Upgrades/Monitoring	WTP Components	Basis
Major		
None		
Minor		
Check condition of pumps. Repair any leakages in the WTP.	With the second secon	Design life was reached.

Upgrades/Monitoring	WTP Components	Basis
	Medium Pressure Pumps	
	Booster Pumps (no picture available)	

Based on a water demand of 2.6MLD and performance review with TT, no upgrades to any of the WTP components are proposed. The hydraulic assessment indicated that the capacity of the WTP is sufficient to cater this demand. Water supply intake upgrades for the Jungshina WTP source are not required because the additional alternate water source is from the Taba water supply (refer to Section 4.4.1.1 for details of Reallocation of Raw Water Supply to Jungshina WTP). TT also confirmed that there are no operational issues encountered with the WTP.

4.5.1.4 Motihang WTP

A summary of major and minor component recommendations for Motihang WTP are presented in Table 18.

Upgrades/Monitoring	WTP Components	Basis
Major		
Retrofit sedimentation tank with lamella.		To meet current flows of 10MLD at higher turbidity and meet turbidity standards.
Minor		
Check flocculation tanks size if retention time is met at 40 minutes (min) for 10MLD current flow. If this retention time is not met, reduce production flow during high turbidity.	A 4	To meet current flows of 10MLD at higher turbidity and meet turbidity standards.

Table 18: Motihang WTP Upgrades and Monitoring

Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

Upgrades/Monitoring	WTP Components	Basis
Monitor free chlorine residual at treated water storage tank outlet.	TREATED WATER STORAGE Distribution by Gravity	To ensure water quality meets standards.
Inspect structures and renew as needed.		WTP has already reached its design life and has been running beyond the assessed capacity.

The hydraulic assessment indicated that the treated water storage tank is undersized based on chlorine contact time (12min vs the minimum 30min), however the treated water quality data provided meets the free chlorine residual standards. Therefore, only close monitoring of free chlorine residual levels is required at this stage to confirm that the WTP is providing suitable free chlorine residual levels.

In addition, the WTP is currently treating up to 10MLD and the WTP is not able to meet water quality standards and this high production rate. If the WTP continues to operate above the assessed level of 7.5MLD, then the sedimentation tanks are required to be retrofitted with lamella. In addition, the flocculation tank sizes need to be checked for whether the required retention time of 40min is met.

4.5.1.5 Dechencholing WTP

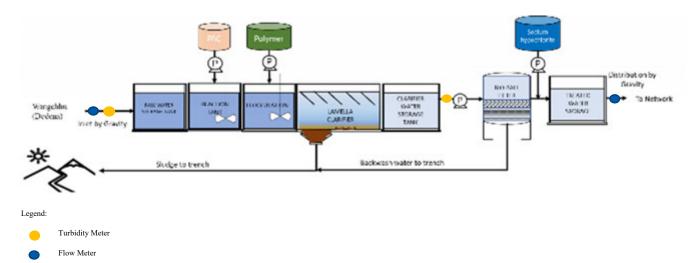
A summary of major and minor component recommendations for Dechencholing WTP are presented in Table 19.

Table 19: Dechencholing WTP Upgrades and Monitoring

Upgrades/Monitoring	Basis
For Existing WTP	
Investigate the root cause of frequent blockage or malfunctioning of flow meters	To better inform the future upgrades or necessary modifications. Although based on the flow monitoring records, one probable reason for the meter malfunction may be due to freezing during winter.
For New WTP (1.4MLD)	
Review the design of all WTP components to meet 1.4MLD and provide two trains of treatment	Existing WTP components are slightly undersized and no level of redundancy.

Based on a water demand of 2.6MLD, the proposed WTP expansion of 1.4MLD (which is under tender) combined with the current WTP of 1.4MLD will be able to meet this demand. Currently, the existing WTP is typically running at 2.5MLD and the WTP does not meet water quality standards. The hydraulic assessment indicated that the WTP components were only slightly undersized to accommodate 1.4MLD. Therefore, capacity upgrades should be incorporated into the proposed WTP expansion rather than upgrading the existing WTP.

4.5.1.6 Ngabirongchu WTP


Based on a water demand of 1.9MLD, the hydraulic assessment indicated that the biofilters are slightly undersized compared to this future demand. The WTP is new and there is no water quality data available to check the WTP performance. Therefore, no upgrades are proposed at this stage. Water quality monitoring should be monitored continuously to better evaluate the performance of the WTP.

4.5.1.7 Taba WTP

A summary of major and minor component recommendations for Taba WTP are presented in Table 20. Figure 4-12 depicts the recommendations and quality monitoring locations and parameters.

Table 20: Taba WTP Upgrades and Monitoring

Upgrades/Monitoring	WTP Components	Basis
Major		
Upgrade BBFs to 7.5MLD.		To meet future demand of 7.5MLD and to meet water quality standards.
Minor		
Continue monitoring the turbidity at raw water and the quality of water after the lamella clarifier.	N/A	To ensure the flocculation tank and lamella clarifier continue to meet the required treatment performance.
Reduce production flow at high turbidity.	N/A	To meet turbidity standards.
Investigate the root cause of frequent disconnection or damage at intake structures.	N/A	To inform the necessary modifications or upgrades in the future.

Figure 4-12: Taba WTP Monitoring

Based on a water demand of 7.5MLD, the hydraulic assessment indicated that the BBFs are undersized and will not be able to meet this demand. In addition, the water quality does not meet the standards when raw water enters the WTP at high turbidity. Therefore, the BBFs are recommended to be upgraded to a hydraulic capacity of 7.5MLD. The flocculation tanks and lamella clarifiers are sized at 8MLD, therefore no upgrades for these components are proposed.

4.5.1.8 Babena WTP

A summary of major and minor component recommendations for Babena WTP are presented in Table 21.

Table 21: Babena WTP Upgrades and Monitoring

Upgrades and Monitoring	Basis
Major	
None	

Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

Upgrades and Monitoring	Basis
Minor	
Check for flocculation tank, coagulant/flocculant dosing tanks and pumps and chlorination. Install the systems as necessary.	Necessary WTP components to meet the required treatment standards.
Confirm filter size.	Significantly oversized.
Confirm sedimentation tank size.	Slightly undersized.

The future demand is 1MLD and the WTP is not yet operational. TT provided drawings for the sedimentation tank and rapid sand filter. It is not clear whether the flocculation tank and corresponding coagulant/flocculant dosing tanks and pumps and chlorination are installed. Therefore, prior to operation of this WTP, it is recommended to confirm the existence of these components to ensure water quality standards can be met.

4.5.1.9 Changbangdu (Boreholes)

The future demand is 0.7MLD. Treatment at the Boreholes WTP is only chlorination, and no water quality data was provided. Therefore, water quality testing should be undertaken to verify water quality and inform any additional treatment requirements.

4.5.1.10 Chamgang New WTP

The future demand is 2.9MLD. Chamgang New WTP is not yet operational, and no information was provided to assess the hydraulic capacity limitations. Therefore, no upgrades are identified at this stage. Water quality testing should be undertaken to verify water quality and inform any additional treatment requirements.

4.5.2 New WTPs

4.5.2.1 Begana

The MOIT provided the *Feasibility Study of Begana Integrated Multipurpose Small Hydropower Project* on 29 March 2023. The feasibility study evaluated a 20MLD Begana WTP downstream of a hydropower facility to augment the water supply to TT. The Begana site is proposed as a water source because of its reliability and resilience. Section 4.4.5 discusses the Begana-Rama utility corridor and trunk main which was assessed as the conveyance route for the water supply from the Begana site.

4.5.2.2 Taba

TT has also indicated their plans to build another 5MLD WTP at Taba, however, as discussed in Section 4.4, this is not necessary based on the demand and is therefore not considered in the Masterplan.

4.5.2.3 Dechencholing

The proposed 1.4MLD Dechencholing WTP is required and recommended to meet future demands.

4.5.3 Operation and Maintenance

The following operational best practices are recommended to all the WTPs as a minimum to ensure continuity of services and compliance with standards:

Testing

• Limited water quality data is provided for all WTPs. Therefore, it is recommended to perform raw water quality tests for each of water sources for all parameters listed in Tables A, B and C of the 2014 EU DWR in accordance with the frequency stipulated in Part 2 of the same standard. This data can be utilised to determine other parameters of concern and ensure that existing facilities are still relevant. This data can also support in determining whether other treatment is required. This data will serve as baseline information for each raw water source quality.

- Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all parameters required in Table 5 and 6 of 2016 Bhutan Drinking Water Quality Standards as a minimum. This plan shall be updated later based on the results of the raw water quality monitoring mentioned above.
- Conduct jar testing to determine the optimum type and dose of coagulant, flocculant, pH, turbidity, solids removal, sludge volume produced and others. Based on this jar testing, establish a dosing matrix for the coagulant and flocculant concentration versus raw water turbidity. This will form as the operator's basis on the amount of these chemicals to dose in proportion to the raw water turbidity. In the future, when the automatic dosing of chemicals is to be implemented, this dosing matrix can inform the program logic control required. This operational practice will ensure the right condition is provided with the current water quality and ensures turbidity standards will be met.

Operations

- Establish a Water Safety Plan (WSP) based on World Health Organization standards or based on nationally approved WSP guidance. WSP is a comprehensive risk assessment and risk management approach that encompasses all steps in drinking water supply chain, i.e., from catchment to consumer, ensuring safe drinking water supply at consumer taps. The WSP should address normal operating conditions as well as incident or emergency situations. It must also include provisions for review and revision so that the plan remains current and accurate.
- Develop Operation and Maintenance Manuals for pumps, instruments and other equipment to ensure proper and safe operation and continuity of services. The manual should also cover inspection and maintenance schedules and programs for equipment considering the design life of each equipment. The operation should also include any remedial actions required in case of any exceedances on water quality standards.
- Regularly inspect all filter media for levels or volume adequacy. Filter media can get carried over during air scouring and backwashing and its amount are reduced over time. Filter media needs to be topped-up annually.
- Either provide an individual sludge treatment facility for all WTPs (except for Chamgang Old WTP and Jungshina WTP have sludge drying beds and sludge lagoons, respectively) or provide a centralised sludge treatment facility or sludge drying bed for WTPs serving north, south and central Thimphu. All other WTPs, besides Chamgang Old WTP and Jungshina WTP, dispose of sludge directly to streams or rivers. If a centralised sludge treatment facility is provided, it should treat all sludge from sedimentation tanks, backwash water from filters and any water used to clean tanks. If individual sludge treatment facilities are to be provided, supernatant can be recycled back to the inlet of the WTP to increase recovery and prevent water wastage as this is a potential resource that can be treated. The effluent from the sludge drying bed of Chamgang Old WTP and overflow of sludge lagoon of Jungshina WTP can also be recycled back to its respective WTP inlet.

Staffing

• Employ a WTP manager, chemist or chemical technician, and process engineer so the WTPs will have relevant technical skills required to operate the WTP efficiently. WTP operation involves process performance analysis, equipment operation and maintenance, and water quality analysis. These personnel may be responsible for multiple WTPs.

4.6 Water Supply Assumptions, Validation and Risks

The preparation of the Water Supply Masterplan involved numerous assumptions particularly in relation to wastewater flows and to a lesser extent network infrastructure. In light of the limited field data available for validation and the assumptions made during the development of the hydraulic model for the water supply network, it is essential to acknowledge the potential risks associated with implementing the proposed recommendations without validating these assumptions. The accuracy and reliability of the model results are contingent upon the accuracy of the assumptions made. Relying solely on uncalibrated model results

introduces uncertainties and compromises the confidence in the correctness of all recommended improvement works.

Implementing the recommendations without proper validation may lead to unforeseen discrepancies between the model predictions and the actual behaviour of the water supply system.

This study created a "digital twin" hydraulic model for the trunk main system within the limits of the data available, which can be used as a high-level decision-making tool and for assessing operational performance. Additional work will be required to further develop the model and increase the level of confidence in the outputs from the tool.

Recommendations given on the key steps to improve the model and refine modelling outputs include a review of system arrangement and connectivity, review of assumptions to fill data gaps, model calibration with flow and pressure monitoring data, and further development from Steady State to Extended Period Simulation.

There are several risks associated with implementing the recommendations in this Masterplan without proper validation. These include:

- Inaccurate performance predictions
- Suboptimal or ineffective improvements that fail to address issues within the network
- Inefficient resource and investment allocation
- Increased public health and environmental risks
- Public and stakeholder dissatisfaction if the recommended improvement works do not deliver on the expected outcomes

Therefore, it is strongly advised to prioritise efforts towards data collection and validation to enhance the accuracy and reliability of the hydraulic model, enabling more informed decision-making and reducing the potential risks associated with unvalidated assumptions.

4.7 Water Supply Masterplan Summary

Within the timeframe of this Masterplan, the water availability assessment and treatment capacity at the WTPs indicate that there is sufficient water supply in the system to accommodate current and future water demands. This assumes that the non-revenue water reduction strategies suggested within this Masterplan, the *Bhutan Water Status Assessment Report (2023)* and the *Draft Roadmap to NRW Management (25 January 2023)* are implemented in conjunction with water demand management.

The modelling demonstrated that for the life of the Masterplan the water supply network is robust hydraulically for the existing trunk main system to accommodate the projected future demands without need for any major upgrades. Upgrades due to poor pipe condition may be required but were not examined as part of this Masterplan.

Table 22 shows a summary of the proposed water supply works and how they contribute to achieving the objectives of the Water Supply Masterplan. Note that these works are based on several assumptions which should be validated before committing to any major capital expenditure.

Table 22: Water Supply Masterplan Summary

			Ob	jectiv	es	
		24/7, high quality, safe and reliable water supolv.	Fair and efficient supply of water to all consumers.	Sustainable use of water.	Infrastructure suitable for firefighting purposes.	Sensitive to the natural environment.
	Reducing NRW losses, particularly leakage, is essential for supporting sustainable growth within the city and ensuring there is adequate water for living while protecting natural water resources. The <i>Draft Roadmap to NRW Management</i> outlines the steps to implement to reduce NRW losses.	√	√	~		✓
	Network extension to DMAs currently supplied by community or private networks to allow for all properties within TT to be supplied by the municipal network which would reduce contamination risk from community supplies which are untreated and improve reliability of supply. Four booster pump stations are likely to be required to distribute water to the highest elevations of each DMA. For other DMAs, PRVs are recommended to ensure adequate pressure in the local watermain network.	~	~			
	Network reconfiguration between Taba and Jungshina WTPs through the extension of an existing 150mm diameter spare watermain coming from Taba WTP to Jungshina WTP, approximately 600m, to enable an additional 3MLD to be treated during periods of low supply from the current Jungshina source (mini-Hydro).	✓	~			
.ks	Network reconfiguration to balance the demand from seven DMAs with the lean season availability of water from their respective WTPs. These include Pamtsho 1, Babesa Right, Above Old Highway, Babesa Left, Bangdu Residents and Bangdu Area Left and Changzamtog.	√	~	<	√	
oposed Works	Flow meters should be installed for general flow measurement, leakage detection and customer charging. Indicative locations for 52 flow meters were identified. Pressure monitoring will be required for each pressure area of the network. Indicative locations for 84 pressure transducers were identified.	√	~	<		
Prop	SCADA upgrades proposed throughout the system include: Online meters and pump controls at WTPs Chlorine residual monitoring at storage reservoirs Water level monitoring at storage reservoirs	✓				
	Establish a WSP to ensure safe drinking water supply at consumer taps. The WSP should address normal operating conditions as well as incident or emergency situations.	~				
	The planned 1.4 MLD upgrade by TT at Dechencholing WTP is required. Additional capacity or construction of new WTPs are not considered necessary up to 2047, assuming Water Demand Management and NRW objectives are achieved.	√	√	<		
	Various upgrades at existing WTPs were identified to ensure each WTP can meet the required Drinking Water Standards for the proposed water demand. Upgrades to primary components include: Taba WTP – BioBall Filters	√				
	Motihang WTP – Lamella to sedimentation tanks					
	Upgrades to storage reservoirs include upsizing, consolidation and strategic storage to ensure 48hours of storage is provided. Datasheets for each individual storage reservoir were developed. These should be used in conjunction with Extended Period Simulations using the hydraulic model to identify under-	✓			√	

Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

	Objectives				
	24/7, high quality, safe and reliable water supply.		Sustainable use of water.	Infrastructure suitable for firefighting purposes.	Sensitive to the natural environment.
capacity storage reservoirs. Clusters of storage reservoirs can then be examined to determine preferred locations for capacity upgrades and strategic level storage reservoirs.					
A new trunk line running the length of the city from Begana to Rama was assessed with respect to a potential new abstraction from the Wang Chhu and WTP replacing all other WTPs (except Taba WTP) to provide a more resilient long term water supply for Thimphu.	~	\checkmark	\checkmark	~	✓
This solution is not considered necessary during the timeframe of this Masterplan (2047). The results show it is feasible to supply the majority of the city by these two sources, although some pumping may be required to reach some higher elevations.					

5. Wastewater Masterplan

This section focuses on the wastewater system in Thimphu and is structured to discuss the appraisal and actions related to key areas of the wastewater system. This section includes:

- Summary of existing system
- Objectives and strategies for the wastewater system
- Design scenarios considered in the assessment
- Appraisal of the wastewater trunk system and recommended actions
- Appraisal of the WWTPs (existing and proposed) and recommended actions
- Separation of the wastewater and stormwater system
- Other initiatives

5.1 Existing System

Wastewater in Thimphu is conveyed to one of seven WWTPs, treated by private on-site septic tanks, or discharged untreated to stormwater drains. The WWTPs have a combined design capacity of 17MLD, however the actual capacity is often reduced due to operational issues (Refer to the *Water Supply, Wastewater and Stormwater Assessment*). Except in areas served by Babesa WWTP and Lungtenzampa WWTP, only blackwater is discharged to the public wastewater mains due to capacity issues at the other WWTPs. Greywater is discharged to the stormwater system in these catchments.

There is good coverage of existing wastewater mains serving the city to collect wastewater from existing properties and the network is continually being expanded. Detailed wastewater supply maps can be found in Appendix F. Stormwater inflow exists within the wastewater network. Sludge at the WWTPs is poorly managed; most WWTPs have no adequate sludge treatment, and the resulting product is disposed unsafely to the environment.

The existing wastewater system is nearing capacity. The overall combined capacity of the WWTPs will be insufficient to cater future flows (24MLD). Wastewater overflows are occurring at WWTPs and wastewater mains surcharge during high flows, resulting in raw sewage on the streets.

5.2 Wastewater Strategies

The wastewater strategies focus on improving the reliability and efficiency of the overall wastewater system by meeting the current, medium-term (2032) and long-term future (2047) demand in the wastewater trunk networks and the WWTPs. Table 23 shows the relationship between the different strategies and the objectives they help to achieve, as outlined in Section 1.3. The following strategies for the wastewater system were developed through consultations with stakeholders to meet the objectives of the Masterplan:

- Upgrade existing WWTPs to be able to meet the current demand.
- Centralise treatment works into two larger WWTPs to meet the future demand (one WWTP for the north and one for the south).
- Develop a new wastewater trunk main to serve the new WWTP in the north which makes use of the existing wastewater system, where applicable, which typically follows proposed greenways.
- Reduce the volume of wastewater being produced by costumers through Water Demand Management (refer to Section 4.4.6).
- Identify and disconnect sources of stormwater inflow entering the wastewater network.
- Reduce the number of blockages in the systems due to solid waste dumping.
- Greywater to be collected by the wastewater treatment network and treated at the WWTPs.
- Establish a sludge management plan for all WWTPs that includes safe collection, treatment and disposal and/or reuse of the sludge.
- Install SCADA systems throughout the network to better monitor flows which will assist Operation and Maintenance of assets and inform future design considerations.
- Extend the existing wastewater network to new neighbourhoods.
- Upgrades to existing wastewater mains and network infrastructure to meet current and future demands.
- Identify opportunities for wastewater reuse, reducing demand on freshwater sources particularly for irrigation.
- Identify alternative manhole covers with zero scrap value to reduce theft risk.

			Objec	tives	
		Protect the environment and public health.	Wastewater services shall be provided for all residents.	All wastewater is treated prior to discharge.	System operated economically and efficiently.
	Upgrade existing WWTPs	√	✓	√	√
	Centralise WWTPs				\checkmark
	New wastewater trunk main to serve the new WWTP				~
	Reduce the volume of wastewater produced	✓			~
	Reduce stormwater inflow	✓			~
Jies	Reduce the number of blockages caused by dumping	✓			
Strategies	Greywater to be collected by and treated at the WWTPs	✓		√	
Stra	Establish sludge management plan	✓			
	Install SCADA systems				<
	Extend the existing wastewater network		\		
	Network upgrades	 ✓	~		
	Wastewater reuse	✓			
	Alternative manhole covers	✓			~

5.3 Design Scenarios

The following scenarios were simulated in the hydraulic model and used to inform upgrades to WWTPs:

- Reduced Demand and Infiltration and Inflow in 2032 (Scenario 2B)
- Reduced Demand and Infiltration and Inflow in 2047 (Scenario 3B)
- High Infiltration and Inflow in 2047 (Scenario 3C)

The flow estimates per WWTP are presented in Table 24.

Table 24: Flow Estimates per WWTP

WWTP	Design Capacity (MLD)	2032 Flow - Scenario 2B (MLD)	2047 Flow - Scenario 3B (MLD)	2047 Flow - Scenario 3C (MLD)
Dechencholing	0.75	1.20	1.53	2.41
Taba	1.0	1.36	1.56	2.46
Jungshina	1.0	1.22	1.52	2.61
Hejo (not included in the initial report)	0.1	0.35	0.41	0.65
Langjophakha	0.6	0.34	0.40	0.63

Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

WWTP	Design Capacity (MLD)	2032 Flow - Scenario 2B (MLD)	2047 Flow - Scenario 3B (MLD)	2047 Flow - Scenario 3C (MLD)
Lungtenzampa	2.0	1.25	1.29	2.04
Babesa	12.0	13.37	15.23	24.03
Total	17.35	18.74	21.53	34.18

Design scenarios allow for 100% of greywater and blackwater to be collected and treated. Refer to the *Water Supply, Wastewater and Stormwater Assessment* for details on the assumptions on the population, sewage generation and infiltration.

5.4 Wastewater Trunk Main Network

Sections of the existing wastewater trunk mains appear to be under capacity for the current, 2032 and/or 2047 design scenarios based on the hydraulic modelling undertaken (refer to the *Water Supply, Wastewater and Stormwater Assessment*). This section outlines the upgrades required to prevent the system from surcharging during design events. It also includes details of new trunk mains required to serve new catchments and WWTPs.

Works are prioritised into Phase 1 (based on 2032 flows) and Phase 2 (2047 flows). However, significant flow monitoring and manhole surveying is required to verify the assumptions made in the hydraulic model prior to undertaking major capital improvement works (refer to the *Water Supply, Wastewater and Stormwater Assessment*).

Results of Scenario 3C with the upgraded wastewater network is also assessed to provide information for TT on the problematic areas that can be expected during extreme storm events.

5.4.1 Extension to the Existing Network to New Areas

The wastewater network should be extended to serve areas within the Thimphu Thromde boundary that are not served by the existing public wastewater network. Table 25 and Figure 5-1 show the details of the wastewater network and WWTP expansion.

Area	WWTP Catchment	Connection Point to Existing Network	New Trunk Main Diameter (mm)	Length (m)
Kabesa	Dechencholing WWTP	Dechencholing WWTP	160	1,500
Royal Bhutan Army	Babesa WWTP	SNMH4755	250	500
Depsi	Babesa WWTP	SNMH2664	100 (force main)	1,500

Table 25: Extension to the Existing Network

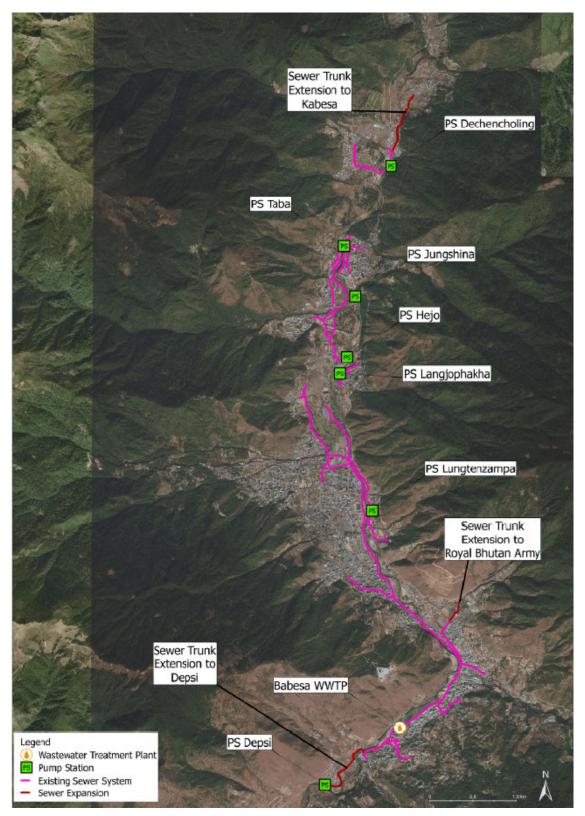


Figure 5-1: Extension to Existing Wastewater Network

Rama, which is located at the southernmost catchment, is not included in the expansion as it is understood that there will be a separate WWTP to serve the region.

5.4.2 Proposed Wastewater Trunk Main

A new wastewater trunk main is required to convey wastewater to the proposed Northern WWTP (Refer to Section 5.5.3). The *Wastewater Network Hydraulic Model Build Report* describes the process undertaken to identify the preferred route in detail. Based on discussions with TT and MoIT and a Political, Economic,

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International
 Water Supply, Wastewater and Stormwater Masterplan

 Projects Limited
 Projects Limited

Social, Technical, Legal and Environmental (PESTLE) Analysis, a preferred route option was selected which became the basis of the hydraulic model developed. This route proposes additional wastewater trunk mains and adapting a centralised wastewater network system each for a northern Hejo WWTP at and a southern Babesa WWTP. For river crossings, the preferred solution is to use a bridge crossing instead of inverted siphons. However, site specific evaluation at each location should be considered in future design stages, such as considering flood levels, ground conditions, costs and other factors.

The proposed route is depicted in Figure 5-2. The proposed wastewater trunk mains are underneath both greenways and existing roads while leveraging on the gravity system. The proposed new pipe length is approximately 5.4km and there are four river crossings. This option reduces the geohazard risks between Dechencholing WWTP and Taba WWTP and considers a shorter traverse of river crossings. This option yields the shortest route amongst all the options.

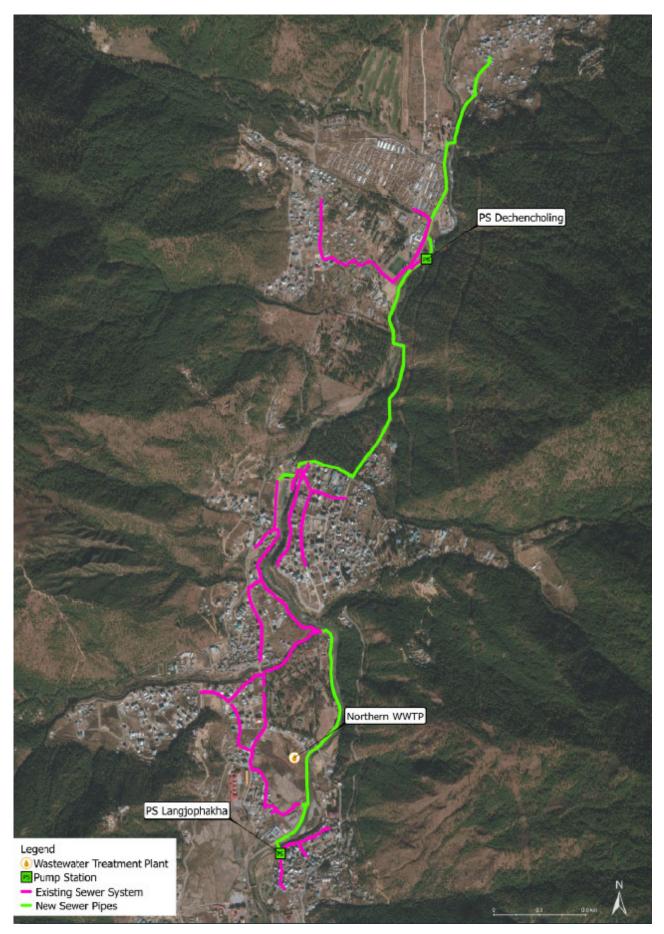
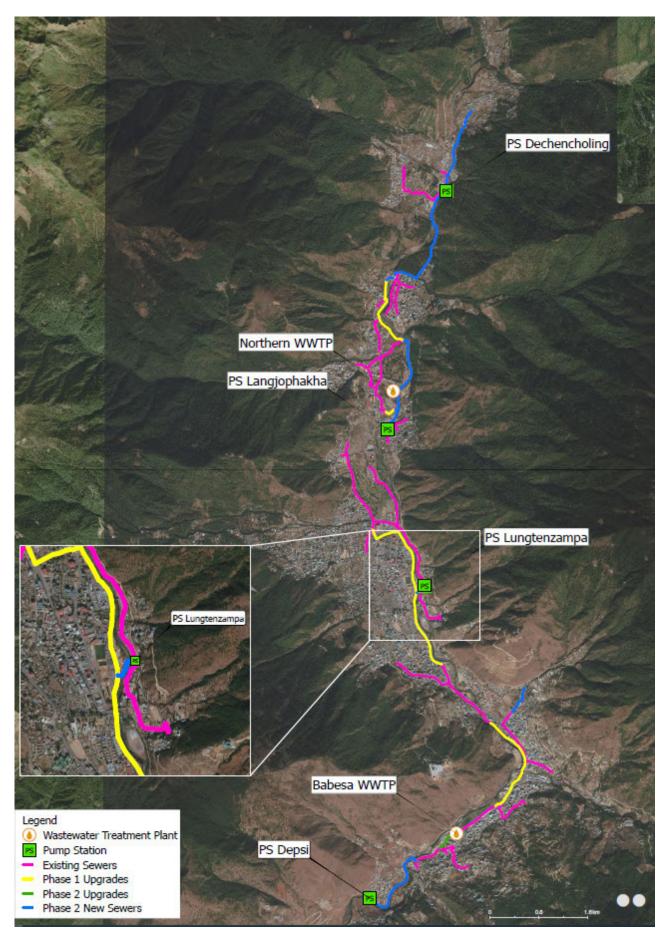


Figure 5-2: Proposed Wastewater Main Route

Ministry of Infrastructure and Transport


Thimphu Water Services Masterplan TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Water Supply, Wastewater and Stormwater Masterplan Projects Limited

5.4.3 Upgrades to the Existing Wastewater Network

The existing wastewater mains proposed to be upsized are shown in Figure 5-3 and listed in Table 26.

Location for Wastewater Main Upgrades	Length (m)	Existing Diameter (mm)	Minimum Proposed Diameter (mm)
PHASE 1			
Jungzhi Lam Northeast, Jungzhi Wom Zur Lam, Jungshina influent	650	400	500, 600
Hejo influent	200	160	200
Doebum Lam, Nordzin Lam, Kashing Lam Se, Yarden Lam, Chogyal Lam	1,150	250	350
Chogyal Lam, Chang Lam Southern, Chang Lam Se	1,900	315	500
Unnamed road beside Babesa-Thimphu Expressway, Wangchhu Lam, Doebum Lam, Babesa-Thimphu Expressway	1,800	500	600
PHASE 2			
Dechencholing influent	60	200	300
Mapho Lam-5	500	250	300

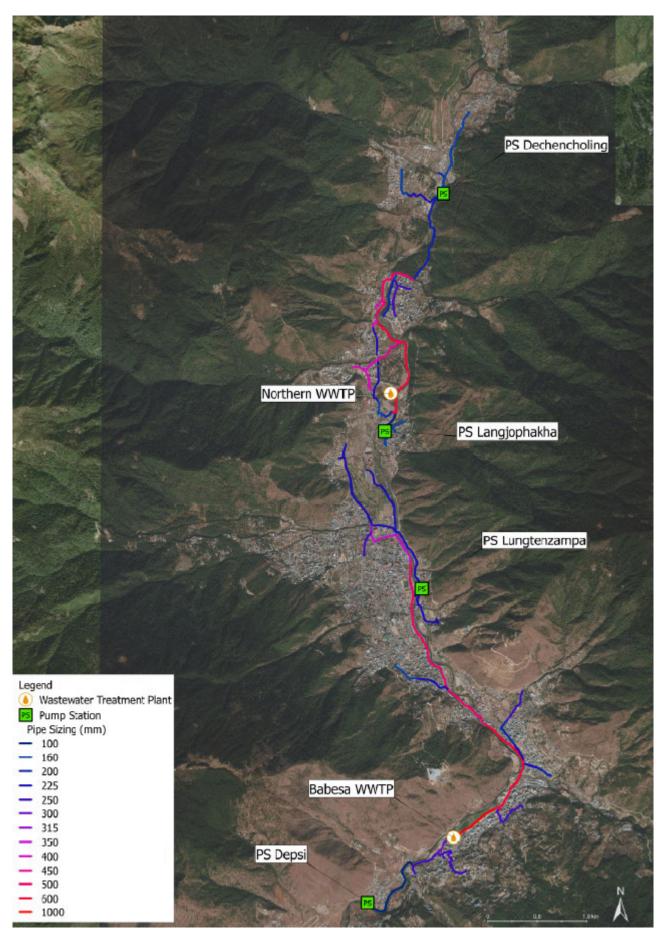

Table 26: Network Upgrades for Phase 1 (Scenario 2B)

Figure 5-3: Wastewater Network Phasing

Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

Figure 5-4: Wastewater Network Sizing for Design Year 2047

Thimphu Water Services Masterplan

In general, wastewater networks use Pump Stations (PS) to convey wastewater flow from lower elevations to higher elevations. For the Thimphu wastewater network, PS are introduced at strategic locations of the existing network to promote centralising the existing wastewater system. Some of the existing WWTPs will be converted to pump stations in Phase 2. The design flow (Scenario 3B) and its total dynamic head (TDH) are shown in Table 27.

Table 27: Proposed Pump Station Details


Pump Station	Design Flow (Ips)	TDH (m)
PS-Depsi	7.1	34
PS-Lungtenzampa	48.7	7
PS-Langjophaka	15.5	21
PS-Dechencholing	60.7	57

5.4.4 High Flow Scenario Check

Scenario 3C is also simulated to check areas in which wastewater mains will surcharge under high flows beyond the design scenario to identify higher risk surcharge areas. Locations of these pipes are summarised in Table 28 and in Figure 5-5.

Table 28: Scenario 3C Results Using Preferred Option

Location of Surcharging Pipes on 3C	Length (m)
Doebum Lam North	130
Dechencholing Influent	60
Lhadrong Lam	370
Unnamed Road near Babesa Thimphu Expressway	2,450
Unnamed Road near Khamtoe Lam	1,320
Zeri Lam	410
Mapho Lam-5	30

Figure 5-5: High Flow Scenario Check

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Projects Limited
 Water Supply, Wastewater and Stormwater Masterplan

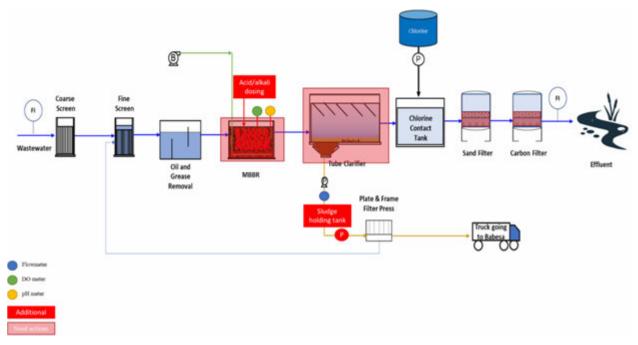
5.5 Wastewater Treatment Plants

Thimphu has eight WWTPs and six of them are operated by TT which treat the wastewater generated from approximately 85% of the population. All six WWTPs were hydraulically and biologically assessed to determine whether the systems were able to cater future flows. Table 29 summarises the existing and proposed WWTPs.

Following the assessment of the existing WWTPs (Phase B) and stakeholder workshops (Phase C), it is proposed to centralise wastewater treatment for the northern suburbs. This will involve construction of a new WWTP and decommission the existing WWTPs namely Dechencholing, Taba, Jungshina, Hejo, Langjophakha and Lungtenzampa. Babesa WWTP will be retained and continue to operate and serve the central and southern areas of Thimphu.

Existing TT WWTPs	Capacity (MLD)	Proposed WWTPs	Proposed Capacity (MLD)
Dechencholing	0.75	Hejo: New WWTP Northern Extension	6.0
Taba	1.0		
Jungshina	1.0		
Langjophakha	0.6		
Нејо	0.1		
Lungtenzampa	2.0	Upgraded Babesa	18.0
Babesa	12.0		
-		Rama: New WWTP Southern Extension	1.0

Table 29: Existing and Proposed WWTP


5.5.1 Upgrades to Existing WWTPs

Based on the current capacity and design life of the existing WWTPs, it is proposed to keep the existing WWTP operating until 2032 to maximise value from the existing infrastructure. This timeframe also allows for improvement in the monitoring and management of the existing system, optimisation of the design for interventions, and time to construct the new WWTP.

All the upgrades listed for the five WWTPs which will be decommissioned are the most significant items which are necessary to run and cater the 2032 flow. Upgrades listed for Babesa WWTP are necessary to run and cater for the 2032 and 2047 flows.

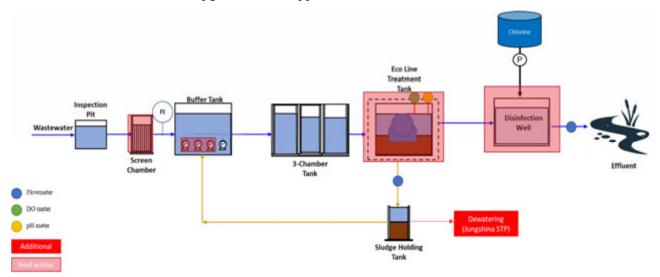
5.5.1.1 Dechencholing WWTP

A summary of major recommended actions and further upgrades for Dechencholing WWTP are presented in Figure 5-6 and Table 30. Other minor upgrades are shown in Appendix G.

Figure 5-6: Dechencholing WWTP Process Flow Diagram (PFD) Recommended Upgrades

Issues Identified	Recommended Actions	Further Upgrades
WWTP is not functional due to multiple mechanical failures and equipment that will reach their design life in 2027	Assess all equipment, auxiliaries, pipelines and cables that are not functioning as per specification	Refurbish or replace equipment to ensure compliance to design capacity
Clogged diffusers which reached their design life in 2017	Replace the diffusers	-
Insufficient quantities or worn-out Moving Bed Biofilm Reactor (MBBR) media	Assess the condition of MBBR media	Wash the media and replenish up to the design volume
Insufficient capacity of the MBBR	Investigate the performance in terms of Biological Oxygen Demand (BOD) removal while operating conditions of Dissolved Oxygen (DO) and pH are maintained and provide an alkali/acid dosing	Provide additional media or increase the air flow or add a unit of MBBR
Insufficient capacity of TUBEdek Settler	Investigate the influent and effluent Total Suspended Solids (TSS)	Change the configuration of settler (such as the slope) to increase the settling area or provide an additional unit
Missing and exhausted filter media	Check the size of the filter vessels and plan how to fill these with media	Fill the filter vessels with media or replace the whole unit if vessel has insufficient capacity
No historical data for all parameters required in influent and effluent	Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters to ensure compliance and identify influent quality	Establish the influent characteristics to use as a basis in constructing future centralised WWTP
No sludge holding tank	Check if there is one sludge holding tank on site and if its capacity is sufficient to handle the sludge while the plate and frame filter press is running	Provide sludge holding tank

Table 30: Dechencholing WWTP Recommended Upgrades


 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International
 Water Supply, Wastewater and Stormwater Masterplan

 Projects Limited
 Vater Supply

5.5.1.2 Taba WWTP

A summary of major recommended actions and further upgrades for Taba WWTP are presented in Figure 5-7 and Table 31. Other minor upgrades are in Appendix G.

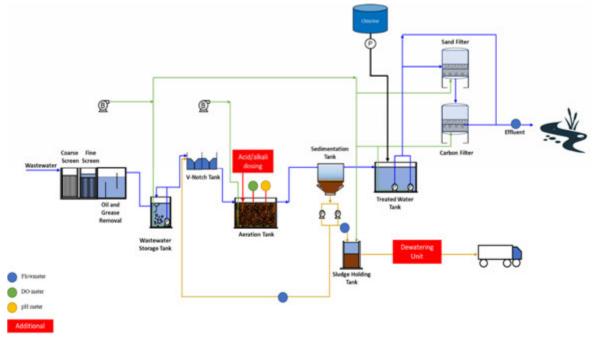
Figure 5-7: Taba WWTP PFD Recommended Upgrades

Issues Identified	Recommended Actions	Further Upgrades
Hydraulically overloaded screens	Evaluate the solids removal efficiency of the screens and check if the solids are accumulated on the chambers	Provide additional unit
75% of pumps are not working	Conduct full maintenance and troubleshooting and assess if equipment condition is acceptable for operation	Replace the damaged pumps with the capacity that can cater for 2032 flow
Insufficient design capacity of eco- line by 136%	Assess the BOD removal performance while operating conditions of DO and pH are maintained	Provide alkali/acid dosing or increase the air flow or add another train of eco-line
Insufficient disinfection well	Investigate the faecal coliform of the effluent to determine if it is meeting the standard	Increase the chlorine dosage or add another tank with sufficient capacity to have enough contact time
No historical data for all parameters required in influent and effluent	Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality	Establish the influent characteristics to use as a basis in constructing future centralised WWTP
No sludge treatment	Check the dewatering unit of Jungshina WWTP to determine if there is excess capacity	Transfer the sludge to Jungshina WWTP or provide dewatering unit to Taba WWTP if that is not possible

5.5.1.3 Jungshina WWTP

A summary of major recommended actions and further upgrades for Jungshina WWTP are presented in Table 32. Other minor upgrades are in Appendix G.

Issues Identified	Recommended Actions	Further Upgrades
Insufficient capacity of Sequential Batch Reactor (SBR)	Assess the BOD removal performance while operating conditions of DO and pH are maintained	Adjust the operation by modifying intercycle phase duration or replace the activated sludge into granular


Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

Issues Identified	Recommended Actions	Further Upgrades
	Check the auxiliaries if it is sufficient to increase the flow	sludge or provide additional unit of SBR

5.5.1.4 Langjophakha WWTP

A summary of major recommended actions and further upgrades for Langjophakha WWTP are presented in Figure 5-8 and Table 33. Other minor upgrades are in Appendix G.

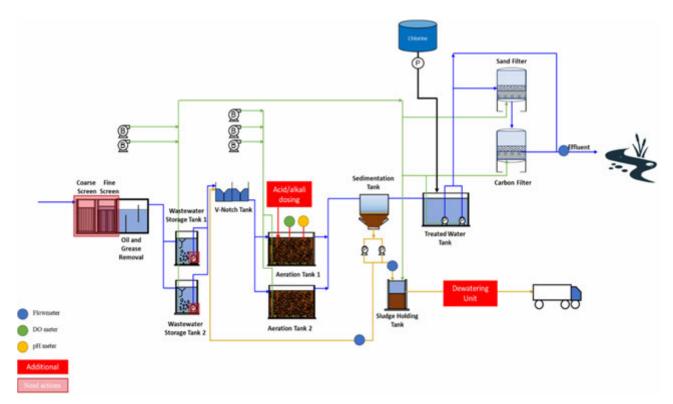

Figure 5-8: Langjophakha WWTP PFD Recommended Upgrades

Table 33:	Langjophakha	WWTP	Recommended	Upgrades
-----------	--------------	------	-------------	----------

Issues Identified	Recommended Actions	Further Upgrades
Other components of WWTP which were not assessed like blowers, pumps and filters may not be capable to handle the 2032 flow	Assess all equipment, auxiliaries, pipelines and cables that are not functioning as per specification	Refurbish or replace equipment to ensure compliance to 2023 flow
No historical data for all parameters required in influent and effluent	Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality	Establish the influent characteristics to use as a basis in constructing future centralised WWTP
No sludge treatment	Provide a dewatering unit	-

5.5.1.5 Lungtenzampa WWTP

A summary of major recommended actions and further upgrades for Lungtenzampa WWTP are presented in Figure 5-9 and Table 34. Other minor upgrades are in Appendix G.


Figure 5-9: Lungtenzampa WWTP PFD Recommended Upgrades

Table 34:	Lungtenzampa	WWTP	Recommended	Upgrades
-----------	--------------	-------------	-------------	----------

Issues Identified	Recommended Actions	Further Upgrades
Leaking pumps	Conduct full maintenance troubleshooting and assess if equipment condition is acceptable for operation	Refurbish or replace equipment to ensure compliance to 2032 flow
Hydraulically overloaded screens	Evaluate the solids removal efficiency of the screens and check if the solids are accumulated on the chambers that could cause overflowing overflow pipe	Provide additional unit
Review functionality of other equipment	Assess all equipment, auxiliaries, pipelines and cables that are not functioning as per specification or which are clogged	Refurbish or replace equipment to ensure compliance to 2032 flow
Possible clogging of diffusers in wastewater storage tanks and aeration tanks	Check the performance during the operation	Replace the diffusers
No historical data for all parameters required in influent and effluent	Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality	Establish the influent characteristics to use as a basis in constructing future centralised WWTP
No sludge treatment	Provide a dewatering unit	

5.5.1.6 Babesa WWTP

A summary of major recommended actions and further upgrades for Babesa WWTP are presented in Figure 5-10 and Table 35. Other minor upgrades are in Appendix G.

Figure 5-10: Babesa WWTP PFD Recommended Upgrades

Table 35: Babesa WWTP Recommended Upgrades

Issues Identified	Recommended Actions	Further Upgrades
Outside coarse screen may be insufficient in receiving the wastewater from new wastewater main One of the coarse screens is not functional	 Prepare a service report for the defective coarse screen Validate actual flow measures coming from the new wastewater main and evaluate with the existing capacity of the coarse screens Evaluate the solids removal efficiency of the screens and check if the solids are accumulated on the chambers 	Refurbish or replace the coarse screen and provide additional chamber of coarse screens
Possible insufficient capacity of wastewater pumps	Identify the flow going from the new wastewater main	Provide additional unit or replace the pumps with higher capacity
Insufficient capacity of SBR when 1 unit is down with 2032 flow Insufficient by 11% with 2047 flow even if all units are running	Assess the BOD removal performance while operating conditions of DO and pH are maintained Check the auxiliaries if it is sufficient to increase the flow	Adjust the operation by modifying intercycle phase duration or replace the activated sludge into granular sludge or provide additional unit of SBR
Possible insufficient capacity of aeration blower when 1 unit is down with 2032 flow Insufficient by 11% with 2047 flow even if all units are running	Validate the flow of assumed capacity of each blower is 740 cubic metres per hour (m ³ /hr)	Provide additional unit
Insufficient contact time in chlorine tank Possible short circuiting happens in a Treated Water Tank	Investigate the faecal coliform of the effluent to determine if it is meeting the standard	Increase the chlorine dosage or add another tank with sufficient capacity to have enough contact time
Possible insufficient capacity of sludge holding tank	Identify the flow of the waste activated sludge and assess if the tank has sufficient capacity to handle the sludge when the sludge treatment is in downtime	Provide additional sludge holding tank or provide additional unit of the downstream equipment like thickener and dewatering unit
Insufficient capacity of Gravity Sludge Thickener and possible the Centrifuge System	Check the water content of thickened and dewatered sludge	Provide additional polymer dosing or provide additional unit of thickener and dewatering unit

Ministry of Infrastructure and Transport Thimphu Water Services Masterplan TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Water Supply, Wastewater and Stormwater Masterplan Projects Limited

Issues Identified	Recommended Actions	Further Upgrades
No historical data for all parameters required in influent and effluent	Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality.	-

5.5.2 WWTP Technologies Assessment

An assessment of conventional biological treatments was performed to understand what treatment technologies would be more suitable to the proposed new WWTPs. Table 36 provides a summary of the advantages and disadvantages of each technology and the suitability of each. A more detailed comparison assessment can be found in Appendix H.

Table 36: First Stage of Screening Options for New WWTP

Treatment Technology	Description	Advantages	Disadvantages	Suitability
Membrane Bio-reactor	Suspended growth process with membrane filtration	<6mg/L Total Nitrogen (TN) effluent is achievable Smallest area requirement Suitable for cold weather but potential issues may arise Identified existing WWTPs with low capacity	Requires dedicated personnel with technical skills to operate and maintain the system especially on maintaining the membranes Possible highest Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) in all technologies	Less Suitable
Modified Ludzack-Ettinger (MLE)	Suspended growth process	<10mg/L TN effluent is achievable Slightly higher area requirement Suitable for cold weather but potential issues may arise Identified existing WWTPs with low capacity Easy to operate and maintain requiring minimal personnel to manage the WWTP and this is the technology used in Langjophakha WWTP and Lungtenzampa WWTP Low CAPEX and OPEX		Preferred Option
Oxidation Ditch	Suspended growth with longer solids retention time (SRTs)	<5mg/L TN is achievable Suitable for cold weather but potential issues may arise Suitable for low capacity Easy to operate and maintain	Largest area requirement Higher CAPEX and OPEX than MLE	Not Suitable
SBR	Batch suspended growth process	5-8mg/L TN effluent is achievable Can be configured for both nitrification and denitrification processes Small area requirement depending on depth Suitable for cold weather but potential issues may arise Identified existing WWTPs with low capacity Low OPEX	Generally requires dedicated personnel to operate and maintain the WWTP but this technology is already existing in Babesa WWTP; therefore, TT is familiar with this technology Higher CAPEX than MLE	Preferred Option
Step-feed Reactor	Plug flow of suspended growth	<5mg/L TN effluent is achievable Small area requirement Suitable for cold weather but potential issues may arise Suitable for low capacity Low OPEX	Requires dedicated personnel to operate and maintain the WWTP because flow needs to be distributed in each train Slightly higher CAPEX than MLE	Less Suitable
Aerobic Granular Sludge	Granular activated sludge	Similar or better effluent quality than other biological nutrient removal technologies	Must be protected against sunlight, wind and rain (especially against freezing in cold climates)	Preferred Option

Thimphu Water Services Masterplan

Treatment Technology	Description	Advantages	Disadvantages	Suitability
		Can be configured for both nitrification and denitrification process Small area requirement Suitable for cold weather but potential issues may arise Suitable for low capacity Low OPEX	Higher CAPEX than MLE	
Integrated Fixed Film Activated Sludge (IFAS)	Suspended growth reactor with attached growth media	Nitrifying bacteria can grow on the IFAS media to provide nitrification despite the limited SRT in the suspended growth process. Suitable for cold weather but potential issues may arise Suitable for low capacity	Slightly large area requirement Require dedicated personnel to operate and maintain the WWTP Higher CAPEX than MLE	Less Suitable
Biological Aerated Filter or Submerged Aerated Filter	Attached growth process with fixed bed filter	Can be configured for both nitrification and denitrification processes Depending on the application of air within the filter, BOD removal and nitrification removal efficiency of ≥85% Small area requirement Suitable for cold weather but potential issues may arise Suitable for low capacity Lower OPEX than MLE	Require specialist expertise to operate and maintain the WWTP Higher CAPEX than MLE	Less Suitable
Fixed Bed Biofilm Reactor	Attached growth process with fixed bed biofilm	Can achieve effluent ammonia-nitrogen concentration of 0.5mg/L Small area requirement Suitable for cold weather but potential issues may arise Suitable for low capacity Lower OPEX than MLE	Require dedicated personnel to operate and maintain the WWTP Higher CAPEX MLE	Less Suitable
MBBR	Attached growth process with moving bed biofilm	Effluent total nitrogen <10mg/L Small area requirement Suitable for cold weather but potential issues may arise Suitable for low capacity Lower OPEX than MLE	Generally requires dedicated personnel to operate and maintain the WWTP, but this technology already exists in Dechencholing WWTP; therefore, TT is familiar with this technology Higher CAPEX MLE	Preferred Option
Rotating Media Reactor	Attached growth process with circular disk on horizontal shaft	Both aerobic nitrifying bacteria and anaerobic denitrifying bacteria can simultaneously live in the attached biofilm Small area requirement Identified existing WWTPs with low capacity	Protection of the system in a cold climate is difficult Requires dedicated personnel to operate and maintain the WWTP	Less Suitable

Thimphu Water Services Masterplan

Treatment Technology	Description	Advantages	Disadvantages	Suitability
		Lower OPEX than MLE	Higher CAPEX than MLE	
Trickling Filter	Attached growth process with fixed bed filter	Suitable for cold weather but potential issues may arise Identified existing WWTPs with low capacity	Applications include combined BOD removal and nitrification, however, difficult to accomplish biological nitrogen and phosphorus removal compared to single- sludge biological nutrient removal suspended growth designs Large area requirement Require dedicated personnel to operate and maintain the WWTP	Not Suitable

5.5.3 New WWTPs

As highlighted in Section 5.2, one of the main strategies for wastewater in Thimphu is to centralise treatment works into two larger WWTPs to improve the efficiency of operations and maintenance. A new WWTP would serve the northern suburbs and an upgraded Babesa WWTP would cater for the southern suburbs. In addition, with the development of Rama and Depsi as part of the southern extension a new treatment facility was considered to minimise pumping.

5.5.3.1 Proposed Northern Extension WWTP – Hejo

5.5.3.1.1 Site Identification for New Hejo WWTP

In collaboration with Thimphu Thromde and Prior & Partners (P&P), Hejo was identified as the preferred location for a new 6MLD WWTP that will serve the northern suburbs. The new WWTP will cater the areas currently covered by Dechencholing, Taba, Jungshina, Hejo and Langjophaka WWTPs.

Preliminary WWTP sizing was undertaken which indicated a site of 6,000m² is required. Several locations were assessed for the new Hejo WWTPFigure 5-11: and Plot C depicted in Figure 5-11 was identified as the preferred location. This site allows for the most efficient integration with other land uses in the area, set back from Tashichho Dzong and the Royal Estate, and reduces the requirement from pumping from the northern trunk main. Prevailing wind direction should be considered to minimise odour concerns for down-wind populations.

Figure 5-11: Location Assessed for the New Hejo WWTP

5.5.3.1.2 Treatment Technology Selection for New Hejo WWTP

For the new Hejo WWTP, the use of NBS was explored as a treatment solution. Common NBS solutions (i.e., integrated constructed wetlands, horizontal / vertical flow wetlands, reed beds) as well as other innovative technologies (i.e., algae treatment in enclosed photobioreactors, phragmifiltre reed beds) were assessed; however, no feasible solution was found which could cater for the design population, available space and which could meet the treatment standards.

The amount of space required by NBS to treat the future flow was the main constraint. Maintaining available landscape for recreational use is a main driver in this area and the use of NBS is not fully justified due to the mentioned constraints. For a 6MLD capacity WWTP, the disposal of a final effluent that meet the discharge limits for Wang Chhu to maintain a good status could not be guaranteed.

The NBS solutions in Table 37 were assessed based on the following assumptions:

- Population Equivalent: 60,000 PE
- Average Inlet Flow: 70L/s
- Peak Inlet Flow: 132L/s
- Inlet Loading Chemical Oxygen Demand (COD): 1,150mg/L
- Inlet Loading BOD: 400mg/L
- Inlet Loading TSS: 216mg/L
- Inlet Loading Total Kjeldahl Nitrogen (TKN): 48mg/L
- Inlet Loading PO4-P: 6.7mg/L
- Inlet Water Temperature: 15°C

Table 37: Assessment of NBS

NBS	Considerations	
Integrated Constructed Wetlands (ICW)	Requires approximately 1,200,000m ² total area for ICW. Space for access and embankments was not included in the assessment.	
	The space on-site (100,000m ²) is not sufficient for the ICW to achieve the required effluent quality standards.	
Algae Treatment in Enclosed	Requires approximately 90,000m ² total area for photobioreactors.	
Photobioreactor	The available space on-site (100,000m ²) is sufficient, however this option requires careful high maintenance and operation at the facility.	
	In addition, a significant portion of the available land is within the flood zone of the Wang Chhu which will be at risk of reduced or unpredictable treatment efficiency.	
	Typically, this option is recommended for smaller flows and might not achieve the required effluent quality standards.	
Hybrid Solution: Traditional Pre- treatment and NBS for Secondary and Tertiary TreatmentThe space on-site (100,000m²) is considered to be sufficient 		
	The overall WWTP would govern the landscape design for this proposed Parkland area, which is culturally sensitive due to the current location of the crematorium and proximity to Tashichho Dzong. This is therefore not a preferred option.	

It is preferred to use conventional treatment to treat the flow, suit the available space and achieve the required quality. Section 5.6.2 provides an assessment of WWTP technologies and highlights four preferred options. Appendix H provides a deeper assessment of these four options, with weighted score selection criteria. The key points to consider for treatment selection are highlighted in Table 38. This deeper assessment pays particular attention to Thimphu Thromde experience and capacity to operate and maintain the WWTPs, the proven reliability of each treatment in the region and the regional availability of the required equipment.

Table 38: Preferred Technologies for New Hejo WWTP

Technologies	Key Points	Suitability
Modified Ludzack-Ettinger (MLE)	Existing treatment in Lungtenzampa WWTP and Langjophakha WWTP; therefore, TT is familiar with this technology in terms of operation and maintenance with > 5 years of experience, and it needs minimal supervision.	Preferred Option
	Easy to construct and land area requirement is approximately 4,800m ² . All materials like equipment or chemical needs for this treatment could be sourced locally or in India.	

Ministry of Infrastructure and Transport

TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Water Supply, Wastewater and Stormwater Masterplan Projects Limited

Thimphu Water Services Masterplan

Technologies	Key Points	Suitability
	Track record for proven and solid performance in this region and climate but could be upset during load/flow variations; therefore, requires an equalization tank.	
SBR	Existing in Babesa WWTP and Jungshina WWTP; therefore, TT is familiar with this technology in terms of operation and maintenance with < 5 years of experience, but it may require dedicated personnel to operate and maintain the WWTP.	Suitable
	Easy to construct if the depth of the reactor is not too high and land area requirement is approximately 4,400m ² .	
	All materials like equipment and chemical needs for this treatment could be sourced locally or in India.	
	Track record for proven and solid performance in this region and climate but could be upset during load/flow variations; therefore, requires an equalization tank.	
Aerobic Granular Sludge	TT has no experience regarding the operation of this type of process facility and it may require dedicated personnel to operate and maintain the WWTP.	Suitable
	Granular sludge may need to be outsourced to other countries like China.	
	Easy to construct if the depth of the reactor is not too high and land area requirement is approximately 4,400m ² .	
	Adaptable in flow/load variations and with a track record for proven and solid performance in China and in this climate.	
	Lower carbon footprint, less waste sludge produced and fewer chemicals needed.	
MBBR	Existing in Dechencholing WWTP; therefore, TT is familiar with this technology in terms of operation and maintenance with > 5 years of experience, but it may require dedicated personnel to operate and maintain the WWTP.	Preferred Option
	Easy to construct and land area requirement is approximately 4,500m ² .	
	All materials like equipment and chemicals needed for this could be sourced locally or in India.	
	Track record for proven and solid performance in this region and climate and adaptable in flow/load variations.	

5.5.3.1.3 Requirements for New Hejo WWTP

The new Hejo WWTP should meet the following requirements:

- Design to treat wastewater in compliance to the Standard Workshops which was identified on 17 October 2022 and stipulated in the *Initial Options Analysis Constraints and Opportunities* Report.
- Have the following facilities and WWTP components which cover all civil, process, mechanical, electrical and control engineering needs:
 - Equipped with preliminary treatment (i.e., screenings, screenings handling, oil/grease and grit removal, equalization tank) to remove all the solids and other components that can affect the downstream equipment and processes.
 - Ensure there is treatment for biological organic matter, biological nutrient removal (i.e., ammonia and MRP) and disinfection.
 - Faecal sludge management processes in place as described in Section 5.7.1.
 - Chemical dosing systems and storage facilities.
 - Minimise or control the odour and noise emitted in operating the WWTP.

- Monitoring and instrumentation that shall include, but is not be limited to: flow meters, pressure measuring devices, water level sensors, pH meters, DO meters, ORP meters, Mixed Liquor Suspended Solid concentration sensors, on-line ammonia, phosphate and turbidity/TSS analysers. Signals and status from these instruments shall be displayed in SCADA system.
- Sampling plan and testing procedure for internal and third-party laboratory testing and analysis to ensure quality standards are met.
- Operation and maintenance manual that comprises, but is not limited to: detailed design criteria, standard procedures for operation and maintenance of each equipment/process, control philosophy, emergency plan, preventive maintenance schedule, health and safety measures, quality monitoring plan, inventory, proper handling, and storing and disposal of chemicals.
- Available WWTP manager, process engineers and mechanical engineers in the WWTP for troubleshooting and to ensure the WWTP is adequately maintained for continuous operation and compliant with required specifications, latest legislations and standards.

5.5.3.2 Proposed Southern Extension WWTP – Rama

5.5.3.2.1 Site Identification for New Rama WWTP

The proposed southern extension of the city into Rama will require a new wastewater system for this unserved area. As Rama is a lower elevation than the existing Babesa WWTP, a new pump station and rising main would be required to convey wastewater from Rama to Babesa WWTP. To reduce operating costs associated with pumping, a new WWTP is proposed at the southern end of Rama as shown in Figure 5-12.

Figure 5-12: Proposed Location for Rama Wastewater Treatment Facility

5.5.3.2.2 Treatment Technology Selection for New Rama WWTP

The use of NBS was explored (**Table 39**) for the new Rama WWTP that would cater the new developments in Rama and Debsi. The space was not a significant constraint in this site, with 110,000m² of land available for a 1MLD WWTP. The low design capacity of this WWTP makes it more suitable to NBS compared to Hejo. NBS typically have low Nitrogen and Phosphorus removal rates and therefore a waste assimilative

capacity assessment of the Wang Chhu would be required to confirm final effluent quality would not result in excessive negative effects on the river.

Table 39: Assessment	t of NBS f	for New	WWTP
----------------------	------------	---------	------

NBS	Considerations	Suitability
Integrated Constructed Wetlands	140,000m ² required – not enough space available	Not Suitable
Reed Beds	70,000m ² required	Suitable
Vertical / Horizontal Wetlands	21,000m ² required	Suitable

5.5.3.2.3 Requirements for New Rama WWTP

The requirements for the new Rama WWTP would be similar to the requirements in Section 5.5.3.1.3.

5.6 Wastewater and Stormwater Separation Strategy

5.6.1 Strategy Overview

Separation of wastewater and stormwater is a key strategy for this Water Services Masterplan. There is a significant amount of stormwater flow entering the wastewater network and greywater is commonly connected to the stormwater network which results in WWTPs operating over capacity and wastewater being discharged untreated to the environment.

This Wastewater Masterplan focuses on blackwater and greywater management but the assessment recognises that the system is integrated. The integrated system includes planned enhancement and maintenance of wastewater, greywater and stormwater systems within the local (property level), network (street scale and wastewater trunk mains) and treatment level (sub-catchment and catchment level).

5.6.2 Wastewater Separation Strategy

To achieve the Wastewater Masterplan vision and manage the wastewater system in a manner that both protects the environment and minimises the risk to public health, different sources of wastewater pollution must be identified. Figure 5-13 illustrates these sources, their potential impact and how effective the current wastewater network is at managing them. To achieve the goals of the Masterplan, the scope and ambition of the wastewater separation strategy is also depicted.

Figure 5-13: Wastewater Separation Strategy

Existing WWTPs are generally not testing for coliforms and do not treat for MRP or ammonia; however, testing of these parameters is included in the proposed WWTP upgrades outlined in Section 5.5.

Strategic Target for Network Separation

The targets for wastewater and stormwater network separation are as follows, and as illustrated in Figure 5-13 and set out in Section 1.3:

- Full basic treatment of all black wastewater in both dry weather conditions and during general storm events. This will largely be achieved by ensuring WWTPs have adequate capacity (refer to Section 5.5.) and will include building better storm resilience by removing storm inflow and infiltration from the wastewater network.
- Full basic treatment of all grey wastewater in both dry weather conditions and during general storm events. This will be achieved by collecting all greywater within the wastewater network, ensuring sufficient capacity at WWTPs and by building better storm resilience. This will provide a direct river health benefit and also increase capacity in stormwater systems.
- Improve the storm network resilience to storm events in accordance with the Integrated Stormwater Management Plan.
- The long-term objectives to further improve river health could include biological nutrient removal systems at WWTPs to treat MRP and ammonia pollution present in black and grey wastewater, as well as integration of green infrastructure into the stormwater network to treat certain pollutants from stormwater discharges as outlined in Section 5.5 and Section 6 and the *Green Infrastructure and Open Spaces Masterplan* proposed as part of the TSP.

5.6.3 Wastewater Separation Delivery Plan

A five-phase delivery plan to achieve a separate and resilient wastewater network is illustrated in Figure 5-14. Each phase will include a series of actions and workshops as summarised in the following sections.

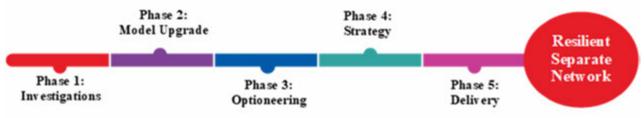


Figure 5-14: Wastewater Separation Delivery Plan

Phase 1: Investigations

Investigations form the foundation for understanding how water is managed through the catchment (wastewater, greywater and stormwater). Investigations will be designed around determining a robust root cause, further detailed development and improvement of the hydraulic model and a view to the options/strategy. Key actions will include, but are not limited to:

- Agree on a vision for the city. This will set the priorities, key outcomes, actions and outputs, key stakeholders and help focus effort for Phase 1. This work is already largely completed as part of this Masterplan and TSP. Priorities to be determined based on growth areas and existing network capacity issues.
- Conduct key surveys within priority sub-catchment(s). These can be scoped and delivered at subcatchment scale; an example is given for the Dechencholing catchment below.
- Main output will be to provide base data for proposed model upgrades in Phase 2.

Phase 2: Model Upgrade

A robust hydraulic model will enable an evidence-based strategy and optimal solutions. This will need to include wastewater, greywater and stormwater systems and their interconnections. Key actions will include, but are not limited to:

- Integrate the existing wastewater and stormwater hydraulic models for Thimphu. This tool will underpin strategy and longer-term catchment operation, therefore local teams must be equipped to manage and enhance the model.
- Model enhancement using survey data. Model to be updated based on Phase 1 surveys. This work will complement the requirements for calibrating and validating assumptions made in preparation of the existing hydraulic model (Refer to *Wastewater Modelling and Trunk Capacity Assessment Report*).
- Model verification based on flow survey, long term telemetry (where exists) plus other evidence (e.g., reported flooding incidents, pollution hotspots, community data, evidence collected for the Integrated Stormwater Management Plan)
- Root cause and impact analysis on people and community, river health and nature.

Phase 3: Optioneering

Utilise the hydraulic model developed in Phase 2 to assess future scenarios. This can include building in various growth, deterioration, water use and climate scenarios. Key actions will include, but are not limited to:

- Re-affirm strategies and outcomes and classify them in short-term, medium-term and long-term targets.
- Long-list of intervention options. This will include quick wins (e.g., local plumbing interventions), through to strategic options (e.g., wastewater trunk main enhancement, WWTP upsizing or consolidation) covering wastewater, greywater and stormwater.
- Include a total value assessment (multiple capitals).
- Client workshops and community workshops, where appropriate.
- Optimise the best combinations of interventions for an integrated catchment approach. This should consider all water challenges in Thimphu including water supply.

Phase 4: Strategy

This includes the process of converting the preferred Phase 3 solution into a viable delivery strategy. Key actions will include, but are not limited to:

- Hierarchy of options and needs between wastewater, greywater and stormwater.
- Optimised network enhancement.
- Stakeholder consultations.
- Adaptive pathway plan.
- Business case and funding.
- Water stewardship and governance.

Phase 5: Delivery

This is a short-term, medium-term and long-term adaptive delivery plan for the wastewater and stormwater separation strategy. Taking an adaptive approach will help Thimphu respond to changes in the catchment, communities and local climate.

5.6.4 Phase 1 in Focus: Investigation Details

In this section some detail is provided for Phase 1 because this work is largely included as part of this Masterplan and TSP. Survey types were reviewed based on United Kingdom best practice, with a sub-catchment shown to illustrate how to plan the investigations.

Information Required

Different types of survey required during the investigation stage are described in Table 40 along with an indicative cost, timescale and difficulty. Some of this data has already been collected as part of this Masterplan and Integrated Stormwater Management Plan, but it is incomplete across the entire catchment. An example of Phase 1 implementation for Dechencholing is provided in Appendix I.

Survey Type	Time	Cost	Skill	Benefits	Basic Drainage Plan	Strategic Plan	River Health Plan
Connectivity	Low	Low	Low	Information on wastewater connectivity (i.e., properties discharge what waste to what system) and identifies misconnections.	\checkmark	\checkmark	~
Drainage Area Survey	Low	Low	Low	Information on stormwater connectivity and identifies misconnections.	✓	\checkmark	~
Manhole Survey	Low	Low	Low	Data on levels, and pipe and chamber size to inform network capacity and model hydraulics.	✓	✓	√
Asset Survey (e.g., Pump Station)	Low	Low	Medium	Information of size and operation of specific assets (e.g., tanks, pumping stations, storm overflows). Required for model.	~	✓	~
Closed Circuit Television	Low	High	High	Information on connectivity, levels, size and state of infrastructure.		\checkmark	<
Flow Survey	High	High	High	Information for flows through a pipe against a specific time. Used for model verification. Typically monitor for 12 weeks to capture rainfall events, likely need 2 seasons of data.		~	~
Invertebrate Surveys	Low	Low	Medium	Data on invertebrate health at different points in a river system. Can inform on impact of different types of discharges in a river.			~
Water Quality Sampling	High	Medium	High	Data on pollutant concentrations at different points or times in a river system. Can inform the impact of different types of discharges in a river.			✓

Table 40:	Survey	T	vpes	for	Investio	ation	Stac	ae
	ourvey	- - -	ypes		mesug	jation	Oluç	3 0

Scale:

Time	Cost*	Skill
1-5 days	£0.2k	Simple
1-4 weeks	£1-2k	Detailed measurements required
4-25 weeks	>£2k	Specific technology required

*cost "per survey" e.g., 100 number/ manhole surveys would cost £20,000. All costs based on United Kingdom rates, require local ratification.

Considering Root Cause and Options at the Same Time

During successful investigations there will be opportunities to explore the viability of certain option types. Several of these were assessed as part of the *Wastewater Modelling and Trunk Capacity Assessment Report*

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Projects Limited
 Water Supply, Wastewater and Stormwater Masterplan
 and recommendations were carried through into strategies and initiatives within this Masterplan. During Phase 1, these potential solutions should continue be explored in further detail to help inform investigations where reasonable to do so. The continued investigations include the following:

- Utilise previous greywater to wastewater connections.
- Greywater re-use at the property level.
- Rainwater harvesting to reduce storm inflows.
- Capacity restrictions and opportunities in wastewater network for greywater connections.
- Key opportunities to retrofit green infrastructure to treat and reduce peak storm inflows.
- Opportunity to reduce wider catchment run-off through land management and natural flood management techniques.

During the Phase 1 surveys is should be possible to include catchment walkovers to appraise the potential of such options at an early stage, whilst appreciating the final solutions will only be borne through the full five phase process.

5.7 Other Wastewater Initiatives

5.7.1 Faecal Sludge Management Plan

Currently, there is no regulation or national environmental policy for the disposal of sludge. The current practices applied pose a risk to the environment and public health due to the pollutants existing in untreated sludge. The sludge management practices per WWTP are detailed in Table 41.

WWTP	Existing Management Practice	Disposal
Dechencholing	Dewatering	Dispose to Babesa WWTP
Langjophakha	No treatment	Dispose to landfill
Lungtenzampa	No treatment	Dispose to landfill
Taba	Not treatment	Unknown
Jungshina	Dewatering	Unknown
Babesa	Thickening and dewatering	Unknown

Table 41: Sludge Management Practices per WWTP

For detailed information on the current management of faecal sludge refer to the *Water Supply, Wastewater* and Stormwater Assessment.

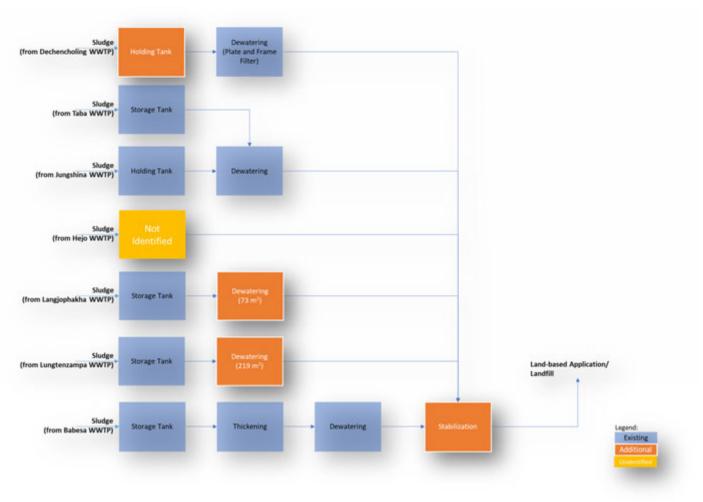
5.7.1.1 Faecal Sludge Management (FSM) Approach

Three different approaches (Table 42) can be assessed to establish a Faecal Sludge Management plan for Thimphu:

- Decentralised: each WWTP fully treats and disposed sludge.
- Centralised: the sludge from each WWTP is collected and transferred to a centralised site to be treated.
- Hybrid: the sludge is partially treated (thickened and/or dewatered) at each WWTP and transferred to a common site to be stabilised for disposal or further processed for reuse.

FSM Approach		Considerations
Decentralised	Economic	High CAPEX. The existing sludge treatment of each WWTP has thickening and/or dewatering system or no treatment at all. Equipment for stabilization to reduce the pathogen of sludge cake for all WWTPs will be required. The cost will depend on the treatment technologies used.

Table 42: FSM Approach for 2032 Scenario


Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

FSM Approach		Considerations
		Potentially high OPEX. Skilled workers needed at the six WWTPs.
	Environmental and Social	Dechencholing WWTP and Langjophaka WWTP have limited space to implement further treatment and are nearby a school and residential areas, respectively.
		Odour control would be necessary at each WWTP.
	Technical	This approach does not align with TSP strategy of consolidating WWTPs.
Centralised	Economic	Potentially high CAPEX to build a centralised WWTP and established the transport system for the sludge.
		High OPEX. Small number of skilled workers needed at the WWTP in comparison to a decentralised solution, but the sludge will need to be transported from the existing WWTPs to the centralised site. OPEX will be depending on the treatment technology used.
	Environmental and Social	Significant space required. A strategic location that would suit the transportation of the sludge from all WWTPs would be required, ideally in an area that is not around residential areas or any social infrastructure.
		Opportunity to produce a reusable product from sludge.
	Technical	This option is aligned with the potential long-term plan for 2047 where there will only be two main WWTPs.
		Complexity will depend on treatment technology used and how the sludge is transported from the WWTPs. Transport of the sludge could be done through routinary collection by transport trucks or through a pipeline network and pumping system (which would require additional works). Lungtenzampa WWTP is below the ground floor level of the street which could potentially be an issue when hauling the sludge.
Hybrid	Economic	Potentially high CAPEX needed to build a common site to process the sludge and establish the transport system for the sludge. Some works in the existing WWTPs will be needed to thicken and/or dewater the sludge due to limited frequency of collection and transport. However, existing dewatering technologies in the WWTPs would be used.
		Potential medium OPEX. Small number of skilled workers needed at the WWTP in comparison to a decentralised solution, but need to transport the dewatered sludge from the WWTPs.
	Environmental and Social	Less space required than with a centralised system as sludge has been dewatered/thickened. Stabilisation could be implemented at Babesa WWTP for the part of the WWTP that has sludge treatment.
		Odour control would be necessary for each WWTP.
		Opportunity to produce a reusable product from sludge.
	Technical	This option is aligned with the potential long-term plan for 2047 where there will only be two main WWTPs.
		Transport of the sludge could be done through trucks since the sludge would be previously thickened and/or dewatered.

A hybrid approach could provide a suitable solution to address the current sludge management needs, but could also be adapted in the future when the WWTPs are consolidated. This is presented in Figure 5-15. The sludge generated in Dechencholing, Jungshina and Babesa WWTPs could be dewatered using the existing systems in place. Additional dewatering units could be added to Langjophaka and Lungtenzampa WWTPs to dewater the sludge before transferring it to Babesa WWTP for further stabilisation and process. Before adding a dewatering system to Taba WWTP, the transfer of sludge from this WWTP to Jungshina WWTP should be explored to minimise the addition of equipment.

For an assessment of treatment technologies to treat the sludge from thickening to dewatering refer to the *Water Supply, Wastewater and Stormwater Assessment, Appendix A*.

Figure 5-15: FSM Hybrid Approach for Thimphu

For the 2047 scenario, Babesa WWTP could continue dewatering and stabilising sludge. Some of the dewatering equipment from other WWTPs could be utilised and updated to accommodate the new sludge capacity required. For the sludge generated in the new Hejo WWTP, further assessment is needed to determine if the option to transfer the dewatered sludge to Babesa WWTP is preferrable over establishing a second sludge treatment system at the new site. Table 43 shows initial considerations to take into account.

Table 43: FSM Approach for 2047 Scenario

FSM Approach	Considerations
Two Stabilisation Systems at	The sludge quality from New Hejo WWTP and Babesa WWTP would be different. However, this is not a critical issue as some of the reuse product of sludge can be utilised as a fertiliser for non-food crops.
Babesa WWTP and New Hejo	Requires additional CAPEX but fewer transportation costs.
WWTP	Increases the amount of land required for the New Hejo WWTP.
	The effectiveness of the stabilization process could be affected by the limited amount of sludge to be treated, particularly with flow variations. Modular systems should be considered to prevent this.
	Requires additional odour control measures for the New Hejo WWTP to avoid disturbance of surrounding inhabited areas.
One	Requires high OPEX in terms of transportation costs from the northern suburbs.
Stabilisation System at Babesa WWTP	Sludge transportation to Babesa WWTP would need to be considered. Additional elements to New Hejo WWTP may be necessary to hold dewatered sludge to avoid frequent transport.
	High storage area may be required for the total dewatered sludge from Babesa WWTP and New Hejo WWTP.

5.7.1.2 Safe Disposal and Reuse Options for Faecal Sludge

The sludge generated in WWTPs is not treated to a stage that is pathogen free and can be safely disposed of in the environment. The sludge is not processed to be reused, but this is something that could be assessed as part of the FSM strategy for the city. The most common reuse and disposal options for faecal sludge were assessed in Table 44.

Options	Key Points	Suitability
Land-based Application (i.e., Fertiliser through composting)	Relatively simple process Can run in low capacity Less CAPEX/OPEX Less energy required as compared to other options Public acceptance needed to use with food agriculture and crops Possible odour emissions during the process and storage	Preferred Option
Energy (i.e., Anaerobic Digestion)	Requires highly skilled operator Requires high organic loads of sludge which is uncommon in domestic wastewater High production cost but a high profit Smaller carbon footprint since the produced energy can minimise the fossil energy Emission to air of by-product CO ₂	Not Suitable
Building Material (i.e., Pyrolysis, Gasification, or Any Advanced Thermal Oxidation Process)	Requires producing sludge ash through incineration that can be combined with cement, but is not suitable for low sludge generation Requires highly skilled manpower High production cost Requires high temperature and pressure; therefore requires high energy Emission of particles, greenhouse gases and flue gases	Not Suitable
Sanitary Landfill	Requires landfill area No value obtained from the output Possible odour emissions	Suitable

Table 44: Safe Disposal and Reuse Options

The estimated areas shown in Table 45 could be needed for treatment if the sludge is to be utilised for landbased application. To adapt the process from 2032 to 2047, a modular composting system could be used. There are currently some suppliers in India that provide modular systems.

Table 45. Additional Areas R	equired for Land-based Sludge	Annlication Depending	ng on Selected Annroach
Tuble 40. Additional Areas In	equired for Early-based bladge	c Application, Dependin	ig on ociccica Approach

Scenario	WWTP	Estimation of Additional Areas Required
2032 – Hybrid	Babesa	Area for stabilization: 465m ²
Approach	Langjophakha	Area for dewatering: 73m ²
	Lungtenzampa	Area for dewatering: 219m ²
2047 – Two Stabilisation	New Hejo	Area for thickening and dewatering: 239m ² Area for stabilization: 134m ²
Systems	Babesa	Additional area for thickening and dewatering: 365m ² Area for stabilization: 440m ²
2047 – One	New Hejo	Area for thickening and dewatering: 239m ²
Stabilisation System at Babesa	Babesa	Additional area for thickening and dewatering: 365m ² Area for stabilization: 574m ²

5.7.1.3 Next Steps to Select FSM Strategy

Before deciding the best strategy to implement a safe and reliable FSM system, the following aspects would need to be considered:

- Quality and quantity of the sludge to be treated
- Space available to use at each site
- Strategic location of potential site
- Transport infrastructure available to transport sludge and the associated costs
- Available budget for investment costs and operational costs
- Manpower skills
- Weather conditions
- Understand community acceptance for reuse and marketability of the final product
- Existing legal frameworks that have possible effects in choosing the processes to be used
- Potential collaboration with other solid waste strategies

5.7.2 Manhole Covers

There are approximately 5,200 manholes for wastewater. The total number of manholes is higher in the city if we consider cover for stormwater drains and other existing covers for other utilities. Manhole covers theft for scrap iron was highlighted as an issue that poses a safety risk to the citizens (pedestrians and drivers) and may put pressure on the maintenance budget for the network.

To address the issue of manhole covers theft, zero scrap value manhole covers could be used in new developments and areas of the wastewater network with high rates of manhole cover theft. Composite manhole covers, as an alternative to traditional covers, are used in different countries where manhole theft is an issue with apparently positive results (such as in China, India). Figure 5-16 depicts examples of these alternative manhole covers. Table 46 summarises characteristics of composite manhole covers.

Figure 5-16: FRP Manhole Covers from Chinese Manufacturers

Table 46: Characteristics of Composite Manhole Covers

Characteristics of Composite Manhole Covers	
Zero scrap value	
Weigh less than traditional covers reducing health and safety risks to workers who handle them	
Strong locking mechanisms that secure the covers in place	
Tight fitting manhole lids which can reduce inflow and infiltration	
Long-lasting and not affected by corrosions	
Non-conductive	
Allow radio frequency signals from Automatic Meter Reading systems and telemetry systems to pass through	

Composite manhole covers can be made of different materials. Currently, there are three main types of composite manhole covers in the market, as summarised in Table 47. Among the three, Fibre Reinforced Plastic (FRP) composite manholes can reach higher load-bearing capacity.

Table 47: Types of Composite Manhole Cover
--

Composite Manholes	Composition	Advantages	Disadvantages		
Fibre Reinforced Plastic	Made of unsaturated polyester resin, glass fibre, quartz and different types of additives.	Good surface. Wear-resistant and have a very high load-bearing capacity.	Fast but complex manufacturing process.		
Bulk Moulding Compounds (BMC)	Made of unsaturated polyester resins, glass fibres, calcium carbonate, trays and steel rods.	Simple and inexpensive manufacturing process. Smooth surface and uniform colour similar to plastic.	Low load ability. Susceptible to friction.		
Sheet Moulding Compounds (SMC)	Made of unsaturated polyester resins, glass fibres, calcium carbonate, trays and a few additives.	Better load carrying capacity than BMC.	Manufacturing process more complex and expensive than BMC. Susceptible to friction.		

To decide which composite manhole option is better for the different areas of Thimphu, the following factors need to be considered:

- Available suppliers: there are FRP manhole suppliers in India.
- Load bearing capacity required in different areas of application: pedestrian areas, driveways, main roads and heavy-duty areas.
- Cover size, type of cover (solid top or recessed) and type of seal required.
- Desired appearance.

In addition to using composite manholes covers, supplementary measures could be taken to reduce thefts, such as:

- Engage with local scraps shops, setting up procedures which can help identify and report thefts.
- Place locks in the traditional manhole covers.
- Awareness campaigns of the public risks of removing manholes covers.

Engagement with scrap shops is the most cost-effective method of reducing manhole cover thefts. Procedures which include customer identification for manhole cover scrappage and delayed payments will help deter thefts at significantly lower costs than replacement of covers.

5.7.3 Solid Waste Entry

Blockages in the wastewater network are an issue throughout the city. Different types of complementary measures could be taken to prevent frequent blockages that affect the operation and maintenance of the system, as summarised in Table 48. The most sustainable and less intrusive approach is to combine behavioural change campaigns for the population with adequate provision of solid waste management and regular monitoring of the network to identify and promptly address blockages.

Other infrastructure measures could be taken; however, they would be more intrusive and less likely to succeed than behavioural change and solid waste management. For example, interception chambers that capture solids could be added to the network. This measure would require significant investment and regular maintenance.

Physical measures could be also taken at property level to prevent the entrance of solids to the wastewater system. Wastewater from new developments could be passed through septic tanks, interceptors chamber, or screens, which would allow unwanted solids to settle to the bottom preventing them to enter the wastewater

network. This type of measure would require maintenance to remove the sludge and unwanted solids from the chamber.

The responsible entity for doing the maintenance would need to be agreed between the municipality and the property owners.

Type of Interventions	Key points	Suitability
Behavioural Change Campaigns	Long term sustainable if well developed and implemented. Opportunity to understand challenges and needs of the citizens. Change will not be seen immediately. Need adequate solid waste management to be successful.	Preferred Option
Solid Waste Management	Long term sustainable if well developed and implemented. Change will not be seen immediately. Need behavioural change campaigns to be successful.	Preferred Option
Regular Monitoring of the Network through SCADA	Requires construction works. It is a complementary measure. It will not solve the problem of blockages but support the effective maintenance of the network.	Less Suitable
Interceptor Chambers	Requires significant construction works. Required regular maintenance. Can provide immediate solution but will not be sustainable without behaviour change.	Less Suitable
Wastewater screens	Located at pumps stations. Required regular maintenance. Mechanical cleaning needed in locations with no permanent on-site technician. Can provide immediate solution but will not be sustainable without behaviour change.	Less Suitable
Septic Tanks in New Developments	lew Required regular maintenance from property owners. Can provide immediate solution but will not be sustainable without behaviour change. No aligned with the objectives of the Wastewater Masterplan of reducing septic tanks in town.	

Table 48: Solid Waste Entry Interventions

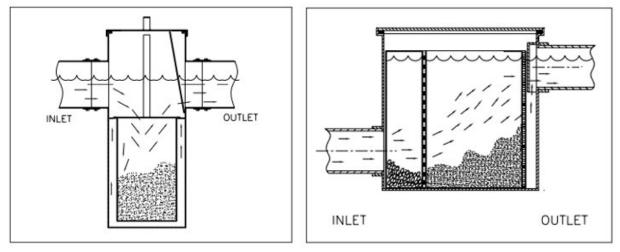


Figure 5-18: Example Wastewater Screen (Source: JWC Environmental)

Behavioural Change Campaigns

Behavioural change campaigns should be developed to raise awareness among the population on the importance of adequate solid waste disposal and on how disruption on the wastewater network operation affects the citizens and pose a risk to the public health. These campaigns could include communication materials to discourage solid waste disposal in toilets and drains and promote the use of solid waste points in the neighbourhoods. Community groups should also be engaged in the campaign to promote good practices and encourage behaviour change through Champions across the community.

Provision of Solid Waste Management

Solid waste disposal areas should be available in each neighbourhood to allow community to adequately disposed their solid waste. They should be in an accessible and safe location. Community preference should be considered in terms of frequency and timing of waste collection when establishing the solid management system. Refer to TSP Solid Waste for recommendations on solid waste management.

5.7.4 Wastewater Reuse for Irrigation

There is a significant opportunity to use wastewater effluent from WWTPs for irrigation of surrounding agricultural and green spaces, particularly for proposed WWTPs in Hejo and Rama. There are numerous benefits for reusing the wastewater:

- The WWTPs provide a reliable supply of water. In a water scarce environment, particularly during the dry winter season, supplies can be supplemented by the consistent flow of effluent from the WWTP.
- The wastewater can act as a fertiliser due to higher nitrogen content. This reduces the cost of importing and spreading fertilisers.
- With less effluent discharging to natural watercourses, background water quality will improve.

Environmental impacts, public health impacts and economic impacts all need to be considered in detail before implementing any wastewater reuse initiatives.

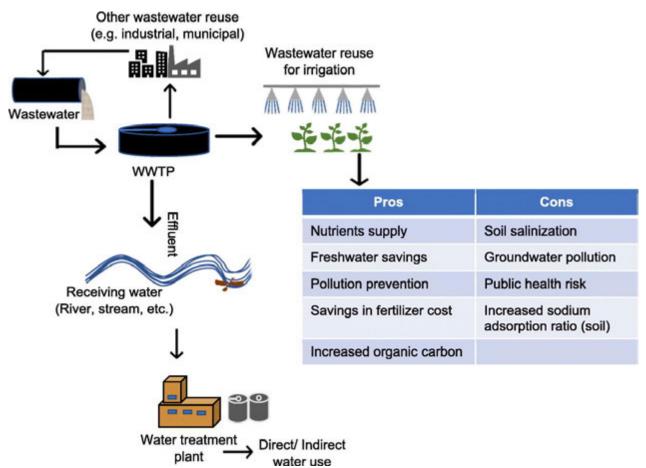


Figure 5-19: Pros and Cons of Wastewater for Irrigation (Ofori, 2021)

5.8 Wastewater Assumptions, Validation and Risks

The preparation of the Wastewater Masterplan involved numerous assumptions particularly in relation to wastewater flows, and to a lesser extent network infrastructure. In light of the limited field data available for validation and the assumptions made during the development of the hydraulic model for the wastewater network, it is essential to acknowledge the potential risks associated with implementing the proposed recommendations without validating these assumptions. The accuracy and reliability of the model results are contingent upon the accuracy of the assumptions made. Relying solely on uncalibrated model results introduces uncertainties and compromises the confidence in the correctness of all recommended improvement works.

Implementing the recommendations without proper validation may lead to unforeseen discrepancies between the model predictions and the actual behaviour of the wastewater system.

There are several risks associated with implementing the recommendations in this Masterplan without proper validation. These include:

- Inaccurate performance predictions
- Suboptimal or ineffective improvements that fail to address issues within the network
- Inefficient resource and investment allocation
- Increased public health and environmental risks
- Public and stakeholder dissatisfaction if the recommended improvement works do not deliver on the expected outcomes

Therefore, it is strongly advised to prioritise efforts towards data collection and validation in to enhance the accuracy and reliability of the hydraulic model, enabling more informed decision-making and reducing the potential risks associated with unvalidated assumptions.

5.9 Wastewater Masterplan Summary

Table 49 shows a summary of the proposed wastewater works and how they contribute to achieving the objectives of the Wastewater Masterplan. Note that these works are based on several assumptions which should be validated before committing to any major capital expenditure.

Table 49: Wastewater Masterplan Summary

		Objectives			
		Protect the environment and public health.	Wastewater services shall be provided for all residents.	All wastewater is treated prior to discharge.	System operated economically and efficiently.
	Minor upgrades to Dechencholing, Taba, Jungshina and Babesa WWTPs to meet proposed treatment standards for flows up to 2032 scenario.	✓		✓	
orks	Beyond 2032, major upgrades would be required at each WWTP. To ensure the wastewater system operates efficiently and economically, a new 6MLD centralised WWTP is proposed at Hejo to serve the Northern Suburbs. This would result in decommissioning of to Dechencholing, Taba, Jungshina, Hejo and Langjophaka WWTPs.	~	~	1	~
	A new trunk main (~5.5km) is required to convey wastewater from the northern suburbs to the new WWTP. There are opportunities to reuse sections of existing trunk main where capacity exists. A new Wastewater Pump Station is required on this route to convey wastewater from Dechencholing to Taba. A smaller pump station is also required to convey wastewater from Langjophaka to Hejo.	~	~	~	~
	The wastewater network in Central Thimphu shall be reconfigured to combine the Lungtenzampa and Babesa catchments. Lungtenzampa WWTP can then be decommissioned. A new pump station will be required at Lungtenzampa.	<	~	~	~
sed W	Wastewater trunk network should be extended to Kabesa, the Royal Bhutan Army and Depsi to serve developments in these areas.		~		
Proposed Works	Sections of the existing trunk network are undersized for future design flows and should be upgraded accordingly. Approximately 6km of upgrades are proposed. These works are generally located in the city centre and Olakha.	~			
	Babesa WWTP should be upgraded to 18MLD in line with population growth in the catchment.	✓	~	✓	
	A new NBS WWTP is proposed to serve the Southern Extension in Depsi and Rama.	✓	~	√	~
	A coordinated approach to FSM is proposed across all WWTPs whereby thickening and dewatering is undertaken at each WWTP, then transferred to Babesa WWTP for final treatment and processing to enable Waste to Energy usage.	 			✓
	Treated wastewater from proposed WWTPs at Hejo and Rama should be considered for reuse in irrigation of surrounding park and agricultural areas.	√			~
	Separation of wastewater and stormwater.	√		✓	\checkmark

6. Stormwater Masterplan

6.1 Existing System

The Wang Chhu runs through the heart of Thimphu, forming part of the wider Wang Chhu catchment which includes Paro and Haa valleys. The many tributaries of the Wang Chhu flow from adjacent Himalayan peaks to define the topographical condition of Thimphu Valley. The Wang Chhu is the primary river which flows through Thimphu Thromde. Numerous tributaries join the Wang Chhu, collecting stormwater run-off from developed areas through a network of open and closed drains, which are primarily made of concrete. Key issues identified include:

- Several of these natural watercourses are culverted along parts of their length.
- Utilities are often laid through stormwater drains which reduce the capacity of the drains and increase the risk of damage to the utilities.
- There is no stormwater treatment which results in poor water quality.

6.2 Stormwater Strategies

The stormwater strategies of this Masterplan focus on improving water quality of run-off during rainfall events and proposing natural drainage systems throughout the city to enhance amenity and biodiversity. The Integrated Stormwater Management Plan (ISWMP, 2020) examined the hydraulic performance of the stormwater infrastructure and therefore is not within the scope of this Masterplan.

Creating green infrastructure and sustainable/natural drainage solutions requires an integrated approach between the Water and Landscape teams. Several areas throughout the city were identified for enhancing green-blue infrastructure and creating new open spaces for public use. Incorporating sustainable/natural drainage solutions into these areas is ideal for treating stormwater run-off from the surrounding urban catchments and improving downstream water quality.

The existing stormwater drainage network is dominated by concrete channels which fail to contribute any benefits with regards to water quality or biodiversity. There is a significant opportunity to introduce nature-based solutions in the form of re-naturalised "green streams", swales and raingardens which will enhance water quality and biodiversity within the city.

Table 50 shows the relationship between the different strategies and the objectives they help to achieve, as outlined in Section 1.3. The following strategies were developed through consultations with stakeholders to meet the objectives of the Masterplan:

- Integrate SuDS features into public streets to reduce run-off rates, provide treatment and attenuation of run-off and enhance biodiversity in public spaces.
- Incorporate SuDS into all new developments to reduce run-off rates, provide treatment and attenuation of run-off and enhance biodiversity within new residential sites.
- Existing culverted streams running through the city should be opened and restored to more natural conditions.
- Divert existing utilities currently in stormwater drains to protect the utilities and reduce blockage risks.
- Solid waste management strategy to reduce dumping in stormwater drains which cause blockages and impact water quality.

		Objectives					
		Improve the water quality of stormwater run-off.	Reduce stormwater run-off rates.	Enhance amenity and biodiversity benefits of stormwater infrastructure.	Improve the water quality of natural watercourses.	Re-naturalise existing culverted streams.	Reduce flood risk from pluvial events.
	Integrate SuDS features into public streets	\checkmark	~	\checkmark	~		\checkmark
ő	Incorporate SuDS into all new developments	\checkmark	~	\checkmark	~		✓
Strategies	Daylighting culverted streams along transport corridors			~	~	✓	
S	Divert existing utilities in stormwater drains				\checkmark		\checkmark
	Solid Waste Management	\checkmark			\checkmark		\checkmark

6.3 SuDS Initiatives

Provision of new SuDS measures is applicable throughout Thimphu Thromde. Rather than individual stormwater projects, SuDS design should form part of all redevelopment work, from upgrades to transport corridors, enhancement of public realm, development new public and private residential and commercial sites, and integrated with the Green Infrastructure and Open Spaces strategy.

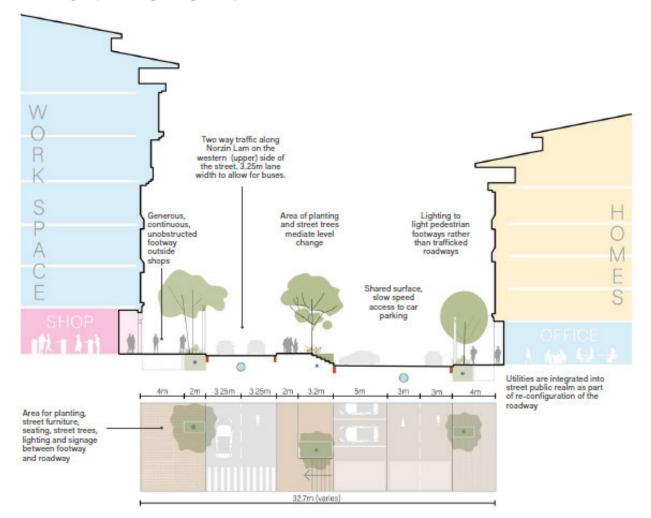
As part of this Masterplan, various land topologies for Thimphu were examined and designs developed to incorporate multiple SuDS measures for these spaces. These include:

- City Centre Street (Norzin Lam)
- Urban Park (Changzamtog Park)
- New Residential Development

The designs examined the drainage routes around each area, taking cognisance of various design objectives, including:

- Maximising SuDS features throughout the site.
- Catering for gradients resulting from existing and proposed levels across and around the site, avoiding excessively shallow and/or steep falls in pipes.
- Integrating with the proposals for daylighting the existing culverted streams.
- Integrating with the strategy for service roads, corridors throughout the site and landscape strategy.

This design was developed taking into consideration the ability to overcome topographical and dimensional constraints associated to the proposed scenario and to be able to connect within the existing stormwater network and current streams when this is necessary. Given the emphasis on SuDS, along with the main drainage system. The networks typically comprise:


- The main stormwater drainage network
- Filter trenches and/or swales

- Road drains (i.e., slot or channel drains)
- Rain gardens with network connections
- Permeable pavements

6.3.1 City Centre Street – Norzin Lam

Norzin Lam is the main street in Thimphu City Centre, running 1.4km from Lungtenzampa Bridge to Bhutan Textile Museum. The street is one of the primary thoroughfares in the city and features a blend of commercial properties, shops restaurants and other amenities. As part of the emerging Transport strategy, pedestrianisation or reduced vehicle access is proposed for Norzin Lam as priority project. This will involve a significant redevelopment of the street, improving pedestrian infrastructure and enhancing public realm. For this reason, it was selected in this Masterplan as an example for SuDS enhancement.

A typical plan cross-section for the developed Norzin Lam is shown in Figure 6-1. Along with the ample provision of SuDS features, this proposal consists of two clear routes for run-off coming from both, the private and public realm. This clear outfall route from the private blocks enables development controls to be established, such as flow limitations. These can be easily defined, such as control and monitoring through the Green Roof down pipes with a splash block to prevent erosion on the public footway prior to discharge either on a tree pit system or public pathway.

Figure 6-1: Cross-section for Norzin Lam (Northern Section)

The stages involved in development of the roadway SuDS are described further below.

The design guideline in Figure 6-1 is the arrangement for the main public streets, for the other streets such as secondary streets in residential areas or laneways, an alternative arrangement is provided in the TSP. Additional drainage features in the secondary streets consists of porous pavements with water collected in

perforated lateral drainage pipes connecting into the main surface water network at the junction with the main public roads.

Run-off from Road

Figure 6-2 shows a potential layout for a SuDS design along a section of Norzin Lam. The proposed design incorporates permeable paving, tree pits, swales, hydrocarbon filters, silt traps and a new stormwater carrier drain. Run-off from the road will pass through a series of these SuDS features which provide water treatment, water storage and/or biodiversity benefits before discharging to the main carrier drain and onward to a nearby urban stream.

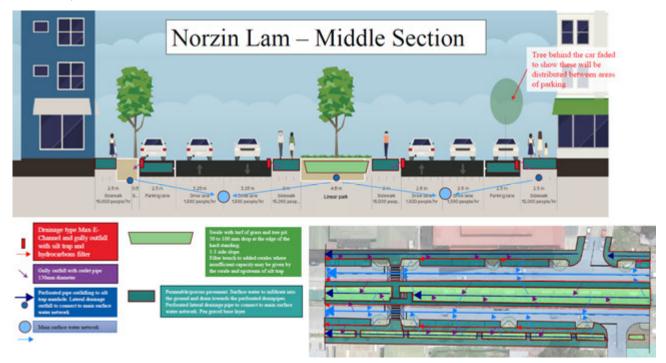


Figure 6-2: Norzin Lam Street Section Plan with SuDS Infrastructure Management Plan

Figure 6-3 shows the flow path and connection details between the different elements.

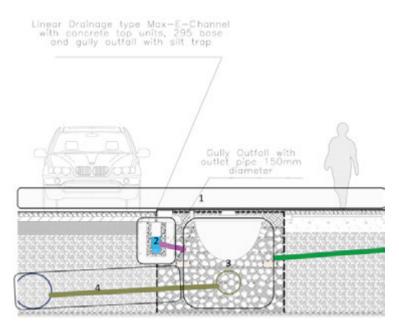


Figure 6-3: Proposed Run-off Route from Main Public Roads

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International Projects Limited
 Water Supply, Wastewater and Stormwater Masterplan

Considerations for handling run-off from public roads include:

- Run-off from impermeable roadway and footpaths will fall to roadside drainage; (1)
- This water will be collected in linear drainage channels, with oversized attenuating channels and petrol interceptors/hydrocarbons filter providing a level of water treatment; (2)
- Water will pass via 150mm outlet to attenuating tree pit (generally continuous trench under public realm surfacing with opening for planting), including perforated pipe out falling to silt trap manhole (3); and
- Final connection will be a lateral drainage outfall to main surface water under the roadway. (4)

Examples of the various SuDS features are depicted in Figure 6-4.

Figure 6-4: Examples of Additional SuDS depicted Clockwise from Top Left: Permeable/Porous Pavement; Perforated Lateral Drain; Swale; and Filter Trench

Considerations for SuDS features include:

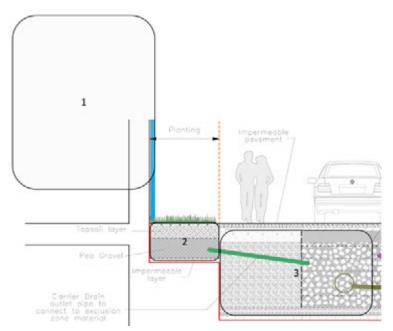
- Run-off from permeable/porous pavement (footpaths or parking bays), where surface water will infiltrate into the ground and drain towards a perforated drainpipe.
- Perforated lateral drainage pipe laying down in a pea gravel base layer, will collect water with oversize attenuating channels and petrol interceptors/hydrocarbons filter, which will connect to main surface water network.

 Ministry of Infrastructure and Transport
 Thimphu Water Services Masterplan

 TWSMP-ARUP-ZZ-XX-RP-C-000007 | Final | 9 October 2023 | Arup International
 Water Supply, Wastewater and Stormwater Masterplan

 Projects Limited
 Projects Limited
 Water Supply, Wastewater and Stormwater Masterplan

- In case of a Linear Park existence/opportunity, SuDS in a swale type will be designed. This swale will consist in a turf of grass and tree pit system, with a 50-100mm drop at the edge of the hardstanding and 1V:3H side slope to allow surface water run-off to connect with.
- Filter trench will be designed where insufficient capacity may be given by the swale and upstream of silt trap.


The design shown for Norzin Lam includes a minimum of two stages of water treatment prior to discharge into the surface water network.

Run-off from Adjacent Buildings

Run-off from adjacent buildings will also need to be considered as part of the redevelopment. For new buildings, developers will be responsible to design a rainfall run-off strategy to tie in the Private Blocks generated surface water run-off volumes within the proposed current plan strategy according to Bhutan and Thimphu local policies and regulations. Current design standards will need to be updated to require stormwater design in line with International Best Practice.

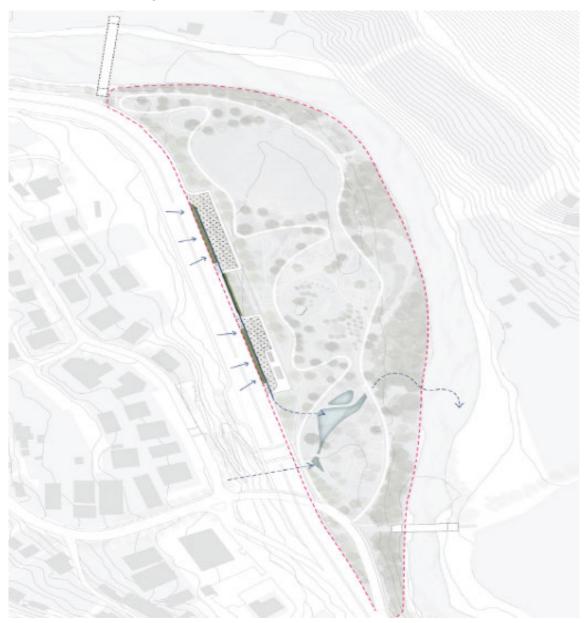
An example design for building run-off is described below and depicted in Figure 6-5.

- Water will be brought from green and hard roof areas (percentage of green roof to be further evaluated) via downpipes, with the opportunity to provide downstream defenders (e.g., splash blocks); (1)
- Roof run-off will gather in a planted bio-retention areas made up of topsoil and pea gravel (still within private development zone); (2)
- Water will be passed via carrier drain to attenuating tree pit and be gathered with run-off from public realm. This stage presents the opportunity for development controls to be placed on private blocks; and (3)
- Final connection will be a lateral drainage outfall to the main surface water network under the roadway (4).

Figure 6-5: Stormwater Drainage Design from Road Adjacent Buildings

This proposal includes a minimum of two stages of water treatment prior to discharge into the surface water network.

6.3.2 Urban Park


Parks are and will be part of a network to provide the opportunity to bring people nature and water together, through accessible public space amenity for everyday use. Parks are at important locations to help to maximise rainwater attenuation through suitable locations for SuDS along drainage corridors.

A concept design for Changzamtog Park was developed as part of the *Green Infrastructure Masterplan* (see Figure 6-6), to show the overall design intent and provide direction for other park designs.

The concept design includes representative general surface water management strategies which should be considered in all parks throughout Thimphu and its peripheral areas. The concept design includes features to deliver high quality and accessible green infrastructure, manage pressures of continued urban growth and achieve sustainable and resilient urban development.

The strategy contemplates the improvement of the surface water quality and turbidity thresholds, by providing different levels of treatments through the different SuDS proposed and the improvement of the temporary storage capacity.

Best-practice park design embeds regenerative and resilient design, with principles of water treatment, storage and reuse as part of an integrated SuDS strategy by opening up potential existing stormwater drains to deliver new SuDS structures (bio swales, filter trenches, stream corridors, wetlands) which can clean, filter and attenuate the existing surface run-off.

Figure 6-6: Changzamtog Park Concept Design

Stormwater drainage design in parks need to manage internal surface run-off from the park itself and should also provide stormwater management for surrounding streets in the upstream catchment.

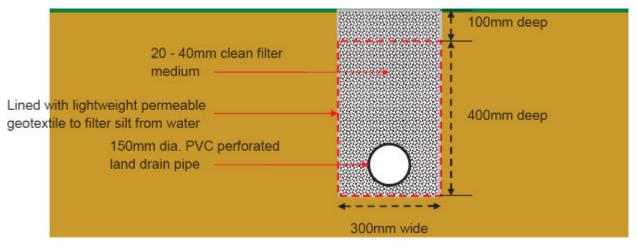
Run-off from Main Public Roads and Parking Bays

The proposed route for run-off from the main roadways and parking bays towards the neighbourhood parks is as follows:

- Run-off from impermeable roadway and footpaths will fall to roadside drainage.
- This water will be collected in linear drainage channels, with oversized attenuating channels and petrol interceptors/hydrocarbons filter providing the first level of water treatment.
- Water will pass via 150mm outlet (typical diameter as water is attenuated) to attenuating swale plus tree pit system, including perforated pipe out falling to silt trap manhole providing a secondary level of treatment.
- In case of a higher volume, the run-off not falling to roadside drainages will be directed into a bio-swale with tree pits system acting as a temporary flood barrier attenuating the run-off exceedance and allow infiltration towards the perforated pipe providing a primary level of treatment by infiltration.
- Parking bays and low traffic streets should be designed with permeable/porous pavement, where surface water will infiltrate into the ground and drain towards a perforated drainpipe.
- At the edge of the parking bays, a rain garden or swale should be designed to control the surface run-off exceedance into the SuDS system. This swale will consist in a turf of grass and tree pit system, with a 50-100mm drop at the edge of the permeable/porous pavement and 1V:3H side slope to allow surface water run-off to connect with the swale.
- Perforated lateral drainage pipe laying down in a pea gravel base layer, will collect water with oversize attenuating channels and petrol interceptors/hydrocarbons filter providing a level of water treatment, which will connect to a main filter trench.
- The final filter trench will outfall into a silt trap before this connects to the park swales system.

This design includes a minimum of two stages of water treatment prior to discharge into the park swales system network.

Run-off Generated within the Park


Parks will be part of a network to provide the opportunity to bring people nature and water together, therefore, some key design components will have a direct impact of surface water run-off management. The most important components will be:

- Jogging and walking tracks and associated filter trenches;
- Permeable paving (to be used for park maintenance tasks) and associated rain gardens;
- Bio-swales; and
- Wetlands.

Park surface run-off management strategy designs will be highly influenced by the topography and the final contour levels as these will define the natural flow routes generated within the site and, therefore, the discharging points into the existing streams or surface water networks.

The flow paths to be designed will be intersected either by, the jogging and walking tracks or areas with permeable pavement. These key components have SuDS infrastructures associated to them so the necessary water quality level and turbidity treatment can be guaranteed by infiltration.

Jogging and walking tracks will be associated with a filter trench along these, on either one or both sides of the track. The filter trenches should be offset from the path to form a 300mm to 500mm wide verge between the drain and path edges with a trenching bucket strip off surface vegetation and excavate rectangular trench to the required dimensions, capacity and maximum 6.6% (1:15), or minimum 2% (1:50) gradient to allow sufficient water flow along the drain. Stripped turfs and excavated soil to be landscaped on-site. Figure 6-7 depicts a typical make-up of a filter trench.

Figure 6-7: Typical Filter Trench Design

The line trench base and sides will be designed with lightweight permeable geotextile, leaving a minimum 300mm overlap at the top of the trench. Laying minimum 50mm depth of filter medium along the trench base. A perforated pipe, with perforations upwards, will be placed along the centre of the trench on the pipe bedding. Backfill pipe and trench with clean filter medium to within 100mm below the edges of the trench – 20mm or 40mm single size aggregate (crushed quarry stone with no fines, clean quarry gravel with no fines) or alternative material (clean as dug gravel with no fines, clean crushed concrete or railway ballast with no fines, rubber shreds).

The line trench would need an overlap geotextile sheets and to backfill the remaining 100mm depth of trench with filter medium to finish stone level with surrounding ground levels if surface water is to be intercepted. If only sub surface water is to be intercepted, then the trench can cover the top of the filter medium with available turfs won from trench excavation works.

Permeable paving will be located in specific areas where park maintenance tasks vehicles need to be placed or access. These parking bays will infiltrate into the ground and drain towards a perforated drainpipe. At the edge of the parking bays, rain gardens should control the surface run-off exceedance into the downstream SuDS components. This rain garden will consist in a turf of grass and local vegetation, with a 50-100mm drop at the edge of the permeable/porous pavement and 1V:3H side slope to allow surface water run-off to connect the permeable pavement to the swale.

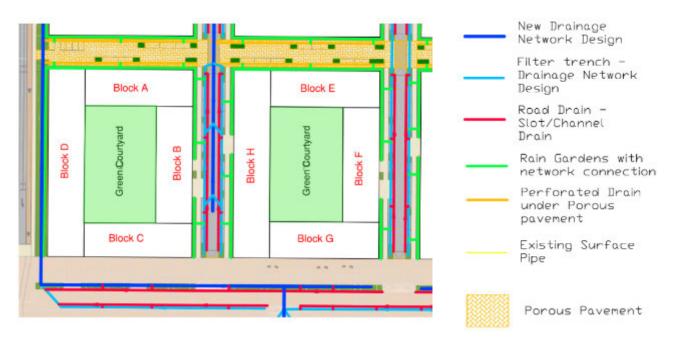
Both, filter trenches and rain gardens should have a perforated lateral drainage pipe laying down in a pea gravel base layer, collecting the infiltrated water run-off. The filter trench will outfall into a silt trap before this connect to the park swales or wetland systems.

This design includes a minimum of two stages of water treatment prior to discharge into the park swales system network.

The swales and wetlands will provide a major temporary attenuation impact along with an extra water quality treatment, prior to discharge by the natural terrain slope, to the existing stream.

6.3.3 Major Residential Redevelopment Sites

As described in Section 6.3.1, run-off from development blocks will connect to the main drainage network via carrier drains, giving the opportunity to manage and monitor flows entering the public system from private blocks.


To assess the potential flows, which could be expected from private blocks, an initial modelling exercise should be carried out as the design develops on an example plot taking into consideration its size and the length of the proposed route from the block to the discharge point.

The rationale behind choosing a specific block is to be able to assess a critical block is that if the strategy could be developed to cater for this specific block, then it would provide confidence that the strategy could be applied to the blocks across the site, as well as establishing parameters for invert levels along the drainage routes. This specific block could also be used to test the impact of various development controls as well as any other residential redevelopment.

Along with controlling flows, SuDS measures shall be incorporated into the development to ensure sufficient pollution mitigation is provided for any given land use in accordance with Construction Industry Research and Information Association (CIRIA) C753, which is generally accepted as international best practice for SuDS design.

Run-off from Residential Redevelopment and Private Blocks

Figure 6-8 shows an example drainage design for a typical two by four-block residential development, similar to the Case Study design depicted in the TSP.

Figure 6-8: Block Section Plan for SuDS Infrastructure Management Plan

The SuDS design for such development involves the following:

- Water will be brought from green and hard roof areas (percentage of green roof still to be decided in local legislation) via downpipes, with the opportunity to provide downstream defenders (e.g., splash blocks).
- Rainwater harvesting can be incorporated for local irrigation.
- Roof run-off will gather in a planted bio-retention area made up of topsoil and pea gravel (still within private development zone).
- Water will be passed via carrier drain to attenuating tree pit (generally continuous trench under public realm surfacing with opening for planting), including perforated pipe out falling to silt trap manhole and be gathered with run-off from public realm. This stage presents the opportunity for development controls to be placed on private blocks.
- Final connection will be a lateral drainage outfall to main surface water network under the roadway.
- Run-off from permeable/porous pavement (footpaths), where surface water will infiltrate into the ground and drain towards a perforated drainpipe.
- Perforated lateral drainage pipe laying down in a pea gravel base layer, will collect water with oversized attenuating channels and petrol interceptors/hydrocarbons filter providing a level of water treatment, which will connect to the main surface water network.
- In case of a Linear Park existence or opportunity, a SuDS in a swale type or temporary storage pond will be designed.

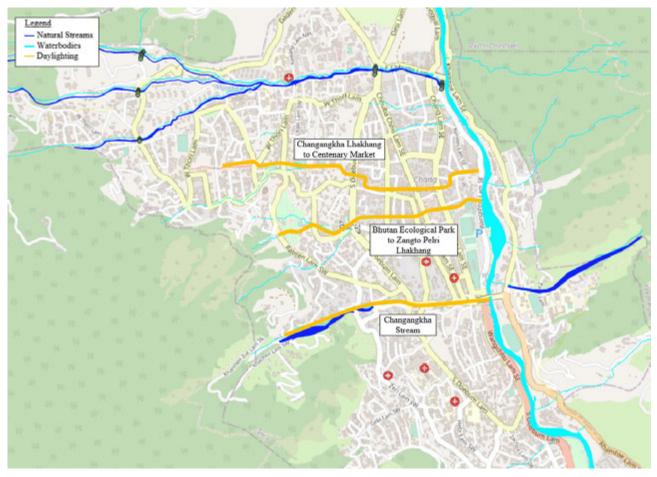
- This swale will consist in a turf of grass and tree pit system, with a 50-100mm drop at the edge of the hardstanding and 1V:3H side slope to allow surface water run-off to connect with the swale.
- Filter trench will be designed where insufficient capacity may be given by the swale and upstream of silt trap.
- For some of the larger blocks it may not be feasible to provide the required level of attenuation (which is established during the design stage based on the generated volume) within the bounds of the block, given potential geometric constraints due to network capacity. This might generate an opportunity to design an attenuation area between blocks where SuDS (swales, park temporary storage ponds, multipurpose temporary flood squares, etc.) could be implemented if the space allows.

6.4 Proposed Interventions for Stream Corridors

As urban areas are developed, with roadways, parking bays and buildings, waterways are sometimes redirected, covered in impervious material and/or buried in pipes, culverts, or a drainage system to create a more buildable surface area. Unfortunately, burying or covering rivers has the unintended consequences of increasing nutrient pollution, degrading habitats and increasing downstream flooding.

Daylighting rivers or streams is the process of removing obstructions (such as concrete or pavement) which are covering a river or drainage way and restoring them to their previous condition. Daylighting removes these artificial impediments and re-establishes rivers within their original channels where possible or, where development is in the way, creates a new channel for the waterway. The resulting restored river or stream provides stormwater benefits as well as numerous aesthetic, economic and environmental co-benefits.

The process of daylighting a river or stream will increase the area available for water to pass through the channel, increasing storage capacity which reduces peak flows and increases flow duration. This helps to reduce downstream flooding. Localised flooding may also be reduced by eliminating choke points where streams were forced into underground channels.


When rivers and streams are unearthed, they transform from liabilities into assets. An attractive stream creates a neighbourhood amenity that provides opportunities for recreation, physical activity, increases property values and can trigger revitalization within the surrounding area.

Open streams, especially small streams, are highly effective in removing pollution. They encourage the transformation of excessive nutrients such as nitrogen and phosphorus, which improves habitats for fish and other wildlife (which leads to more additional recreational opportunities). Humans can also benefit directly from higher drinking water quality abstracted from downstream.

While open rivers and streams provide direct floodwater storage, they also contribute to more effective stormwater management by diverting stormwater from the sewage system. Long-term costs are also less than those needed to repair and maintain culverts and other storm structures, resulting in fiscal benefits for local government.

To facilitate urban growth in Thimphu City Centre, several small streams which run through the city were culverted. These streams are now generally hidden and forgotten by society and are becoming environmental hazards due to dumping of litter and discharge of untreated wastewater.

There are several existing culverted streams running through the City Core, with three of these stream corridors as main target streams for daylighting and re-naturalising as depicted in Figure 6-9.

Figure 6-9: Streams for Daylighting

Restoring streams to the surface and creating healthy riparian communities along them creates opportunities for restored wildlife habitat, recreation, groundwater infiltration and greenhouse gas sequestration. Restored streams do not necessarily have to follow their original course, although restoration efforts may be more successful if some semblance of the original topography remains. These will be connected to adjacent water bodies to allow for migration of aquatic organisms and wildlife movement.

There are several technical considerations when undertaking a stream daylighting project. These include the design, performance, water quality objectives, pollutant load and construction logistics. Detailed engineering and hydrology assessments will need to be conducted to determine the appropriate configuration of the daylighted stream given its projected water volume, flow rate and contributing watershed area.

6.5 Stormwater Management for Construction and Operation Activities

The TSP and supporting Masterplans (Water Services, Transport, Open Spaces and Green Infrastructure) aim to enhance the well-being of Thimphu's residents, visitors and its surrounding environment and enable them to thrive in a sustainable manner.

Implementation of the TSP will involve significant construction activities throughout the duration of the plan. Appropriate management of stormwater run-off from construction sites is essential for protecting natural watercourses and aquatic habitats. Construction sites are generally large sources of contaminants, including silt, earthworks sediment, concrete and grout washdown, hydrocarbons, paints and other chemicals.

Table 51 identifies potential sources of contaminants during construction and operation phases along with proposed mitigation measures which should be implemented to prevent negative environmental impacts.

Table 51: Mitigation Measures

Table 51: Mitigation Mea	
Character of Potential Impact	Mitigation Measure
Construction Phase	
Interaction of wash down water from concrete and cementitious material with surface water	All batching and mixing activities will be located in areas away from watercourses and drains. Surface water drainage around the batching plant will be controlled. No hosing into surface water drains of spills of concrete, cement, grout or similar materials. Washout from mixing plant or concrete lorries will be carried out in a designated, contained impermeable area.
Process water used during construction	To be disposed of appropriately.
Surface run- off/rainfall	The existing surface water drainage outfalls will be maintained until the permanent drainage is executed, completed and functioning satisfactorily including its discharge to approved outfalls. Ground profiles and completed hard surfacing will, at all times, be maintained to shed surface water efficiently and directly into the nearest drain and surface water swale where possible.
Discharges to waterbodies	Contractor will ensure to comply with the appropriate legislative requirements: Water Framework Directive 2000/60/EC; European Communities Environmental Objectives (Surface Waters) Regulations 2009 (Statutory Instruments Number 272 of 2009); and European Communities Priority Substances Directive 2008.
De-watering operations and surface run-off discharge	To be controlled and monitored by the contractor. Construction phase mitigation measures were proposed to ensure that significant negative effects on material assets will be avoided, prevented or reduced during the construction of the proposed development.
Groundwater	Groundwater ingress shall be managed during construction to ensure excavations are protected from groundwater flooding.
Generation of effluent and sanitary waste from facilities provided for the work force on-site	Effluent generated on-site from the Contractor's sanitary facilities will be discharged to a holding tank and removed off site by a certified waste removal Contractor(s). Temporary discharge utilising the existing or permitted wastewater network will be in agreement with the Local Authority. All necessary health and safety measures will be undertaken to ensure the safety and welfare of construction personnel, the public and roads users during construction of the wastewater drains.
Water supply	A mains water connection will be required at the construction compounds for staff welfare facilities and other uses associated with the compounds.
	The water demands during the construction phase on the existing water network are considered to be a slight negative and short-term impact. The contractor will make all necessary arrangements for a temporary water supply.
Impacts on the existing services	The Contractor will be obliged to put measures in place to ensure that there are no interruptions to existing services unless this is agreed in advance with the relevant service provider.
provided by utility companies and the local authorities, such as electricity, gas, telecommunications	All works in the vicinity of utilities apparatus will be carried out in ongoing consultation with the relevant utility company or local authority and will be in compliance with any requirements or guidelines they may have. Where new services are proposed, the Contractor will apply to the relevant utility company for a connection permit where appropriate and will adhere to their requirements.
and drainage	Care will be taken to avoid any damage to asbestos cement (AC) watermains when excavating in the vicinity of them.
	Removal of AC watermains, if required, will be undertaken in accordance with the Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006, as amended and the Safety, Health and Welfare at Work (Construction) Regulations, 2013 by suitably qualified contractors and disposed of in an appropriately licenced waste facility.
Operational Phase	
Road run-off	Maximising design to use of sustainable urban drainage systems to minimise the impact on the surface water system. Excess surface water generated from the proposed works, namely the roads located within the existing sites is to be conveyed through a new sustainable urban drainage system which will provide filtration and storage on site prior to discharge to the existing surface water outfall to the adjacent watercourse. Thus, there will be no impact on the existing surface water drainage network in the vicinity.

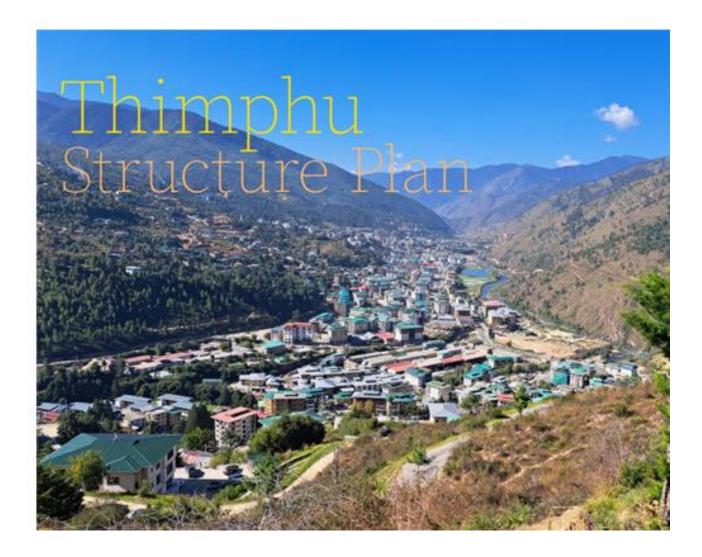
Ministry of Infrastructure and Transport

Thimphu Water Services Masterplan

Character of Potential Impact	Mitigation Measure
Winter maintenance	Application of salt and grit during icy conditions on the road can adversely affect the ecological balance of the aquatic system and increase the bioavailability of chemical contaminants. Maximising design to use of sustainable urban drainage systems will minimise the impact on the surface water system.
	Source control is provided by maximising grassed areas and the use of bioretention tree pits, porous pavement/permeable surface, road linear drains and infiltration trenches. These features provide water treatment and infiltration to reduce the amount of water reaching the stormwater network and reduce pollutant loading.
Accidental spillage	Maximising design to use of sustainable urban drainage systems to minimise the impact on the surface water system. Petrol interceptors will be provided to ensure the quality of surface water run-off from the development.
Increase the rate of run-off	Maximising design to use of sustainable urban drainage systems to minimise the impact on the surface water system. Source control is provided by maximising grassed areas and the use of bioretention tree pits, porous pavement/permeable surface, road linear drains and infiltration trenches. These features provide water treatment and infiltration to reduce the amount of water reaching the stormwater network, maximise the infiltration potential of the site and reduce pollutant loading.

6.6 Stormwater Masterplan Summary

The Stormwater Masterplan identifies various measures to enhance water quality of stormwater and natural watercourses in Thimphu.


SuDS needs to be implemented as a fundamental design aspect for all developments in Thimphu. Various SuDS design examples are presented for different land typologies – streets, urban buildings, parks and larger residential developments. Each design demonstrates how a series of SuDS features can be interconnected in a "treatment train" to ensure high quality of run-off is discharged to the environment.

Existing urban streams were examined, and proposals developed to daylight and re-naturalise the streams back to their original condition. These proposals were developed in conjunction with the Green Infrastructure and Transport Masterplans to create attractive pedestrian routes into and through the city core, while enhancing amenity, biodiversity and flood risk management.

Climate change is anticipated to increase rainfall intensity and frequency in the region, which would increase runoff rates and thus increase flood risk. It is likely that portions of the existing drainage system will be insufficient to handle the resulting increased flows. Climate change projects should be considered when designing and sizing future drainage systems.

Thimphu Water Services Masterplan

Delivery Plan

Contents

1.	Introduction	2
1.1	Background	2
1.2	Purpose	2
2.	Phasing and Prioritisation	2
2.1	Timescale for Implementation	2
2.2	Multi-criteria Analysis	3
2.3	Priority	3
2.4	Phasing and Prioritisation Assessment	4
2.5	Recommended Next Steps	4
3.	Governance Structure for Implementation	5
4.	Organisational Capacity	6
5.	Funding	7
Table	es	
Table	e 1: Timescale for Implementation	3
Table	e 2: Cost Ranking for MCA	3
Table	e 3: Prioritisation Criteria	4
Figu	res	
Figur	re 1-1: Project Phases	2
•	re 3-1: Proposed Governance Organisational Chart (Gerald Eve)	6
Арре	endices	
Appe	ndix A	A-8
	bined Project List, MCA and Prioritisation	A-8

1. Introduction

1.1 Background

Arup are preparing a Water Services Masterplan, in support of the Ministry of Infrastructure and Transport (MoIT) (formerly Ministry of Works and Human Settlement), Thimphu Thromde (TT) and the Royal Commission for Urban Development (RCUD) (the Client Team) in their review of the Thimphu Structure Plan (TSP). The aim of the project is to examine the existing water supply, wastewater and stormwater systems' infrastructure and identify capital improvement projects required to service existing and future development within Thimphu. The Masterplan will run simultaneously with the TSP, providing inputs as required and to inform the TSP. Upon completion, the Masterplan will provide the MoIT and RCUD with a list of recommended concept-level projects at a citywide scale.

1.2 Purpose

This report relates to Phase E of the Thimphu Water Services Masterplan 'Delivery Plan' as shown in Figure 1-1. The report builds on the works undertaken in previous phases, and examines:

- Priority and phasing of interventions
- Capacity of public and private bodies to deliver the works
- Governance structure
- Funding streams

Figure 1-1: Project Phases

This report outlines the proposed Delivery Plan for recommended works as outlined in the Phase D *Water Supply, Wastewater and Stormwater Masterplan,* which was issued in June 2023.

2. Phasing and Prioritisation

The phasing and implementation plan takes the recommended interventions from the *Water Supply*, *Wastewater and Stormwater Masterplan* strategies and assesses each against different criteria to establish the priority for each intervention. This section describes the Multi-criteria Analysis (MCA) used to prioritise interventions. The estimated timescale for completion of each intervention is also presented.

2.1 Timescale for Implementation

The timescale for implementation of each project is defined as one of four levels as shown in Table 1. The timescale for implementation represents the anticipated amount of time a project will take from inception to completion.

Table 1: Timescale for Implementation

Time Scale	Duration
Quick Win	0-2 years
Short Term	2-5 years
Medium Term	5-10 years
Long Term	10+ years

2.2 Multi-criteria Analysis

The MCA is split into two sections, which are cost and benefit.

Cost

The costs are split into capital cost and operations and maintenance cost with each intervention ranked on both and the value for each ranking tier is shown in Table 2. These are high-level estimates of cost ranges and are subject to detailed design.

Rating	Capital Cost (\$USD)	Annual Operations + Maintenance Cost (\$USD)
Very Low	<500,000	<25,000
Low	500,000 - 1,500,000	25,000 - 50,000
Medium	1,500,000 - 3,000,000	50,000 - 100,000
High	3,000,000 - 5,000,000	100,000 - 200,000
Very High	>5,000,000	>250,000

Benefit

The benefits are also ranked on a five-point scale of very low, low, medium, high and very high. The benefits are across the following three areas:

- Nurture Community Protect and enhance diverse communities and equitable and healthy neighbourhoods, leading to improvements in the quality of life for city residents.
- Create Opportunity Short to long-term benefits in economic growth, job creation, livelihoods and worker productivity.
- Cultivate Balance Create environmental benefits (healthy ecosystems, cleaner air and water), which reduce carbon emissions.

2.3 Priority

The priority for each project determines which implementations should be targeted first to achieve the greatest benefit. This is based on the rating of the three benefits criteria. Each intervention is ranked on a five-point scale as shown in Table 3.

Table 3: Prioritisation Criteria

Rating	Prioritisation
Very Low	Within 20 years
Low	Within 10 years
Medium	Within 5 years
High	Within 2 years
Very High	Immediately

2.4 Phasing and Prioritisation Assessment

The combined project list, MCA and prioritisation is provided in Appendix A.

2.5 Recommended Next Steps

2.5.1 Water Supply

The immediate requirements for the Water Supply System are:

- Reduce Non-revenue Water (NRW).
- Flow and pressure data gathering.

These are required to ensure sustainable, informed decisions are made regarding design of future upgrades to the Water supply system.

The following next steps are recommended:

- 1. Installation of network flow meters. Indicative locations for 52 flow meters have been identified at the outlet of WTPs, at the outlet of pumps and at the inlet to DMAs.
- 2. Installation of pressure transducers throughout the network. Indicative locations for 84 pressure transducers (installed directly onto water trunk mains or fire hydrants) have been identified. Pressure transducers should be installed at the maximum and minimum elevations within each DMA.
- 3. Installation of Pressure Reducing Valves (PRVs). Indicative locations of 30 PRVs have been identified to mitigate very high network pressures.
- 4. Hydraulic model calibration using gathered flow and pressure data.
- 5. Implementation of NRW reduction measures as identified in the *Draft Roadmap to NRW Management (25 January 2023).*
- 6. Extended Period Simulations in the hydraulic model to identify under capacity storage reservoirs and determine location and scale of reservoir upgrades and consolidation.
- 7. Develop a Water Demand Management policy and standard.
- 8. Implement monitoring programme for existing water sources.

2.5.2 Wastewater

The immediate requirements for the Wastewater System are:

- Ensure WWTPs are fully operational.
- Network flow monitoring and physical data validation.
- Separation of wastewater and stormwater systems.

These are required to protect the environment, maximise potential of existing infrastructure and ensure a sustainable, informed decisions are made regarding design of future upgrades to the Wastewater system.

To achieve these requirements, the following next steps are recommended:

- 1. Repair or replace and recommission non-functional WWTP components.
- 2. Complete manhole surveys and network flow monitoring to verify the depths, dimensions and flows in the wastewater network.
- 3. Hydraulic model calibration and using manhole surveys and flow monitoring data.
- 4. Implement the Wastewater Separation Delivery Plan.
- 5. Develop and implement behavioural change campaigns to avoid illegal dumping of solids in the wastewater network.

2.5.3 Stormwater

The immediate requirements for the Stormwater System are:

- Implementation of Sustainable Urban Drainage Systems (SuDS).
- Separation of wastewater and stormwater systems.

The following next steps are recommended:

- 1. Develop design standards for SuDS.
- 2. Implement the Wastewater Separation Delivery Plan.

3. Governance Structure for Implementation

Strong governance is essential for ensuring that the works proposed under this *Water Supply, Wastewater and Stormwater Masterplan* are executed in an appropriate and efficient manner. A coordinated approach to works identified in the entire TSP (including Transport, Water, Utilities, Green Infrastructure, Housing, Healthcare, Education, Employment etc.) is required and led by a single entity.

As part of the TSP Delivery Strategy, the RCUD are proposed to provide overall governance and assurance for all works. MoIT will be responsible for implementation and TT will operate and maintain the infrastructure. The proposed Governance Organisation Chart is shown in Figure 3-1.

There is opportunity to establish a new, apolitical public sector led delivery vehicle. This could take the form of a Project Management Office (PMO) with expanded capacity to deliver projects and would ensure alignment with wider TSP priorities and infrastructure projects. Risk of duplication or overlap of responsibilities would need to be carefully managed.

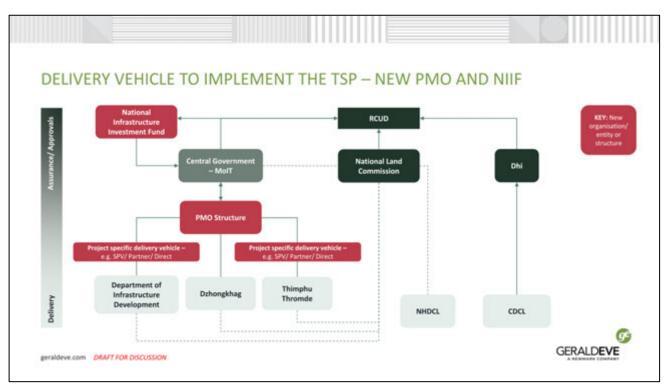


Figure 3-1: Proposed Governance Organisational Chart (Gerald Eve)

4. Organisational Capacity

Analysis of recent spending by Gerald Eve shows limited capacity to spend at a national and local level. MoIT and TT are consistently spending below their allocated annual budgets (average spend 57% and 48%, respectively of annual budgets over the past three years), indicating resource constraints and limited capacity at these organisations. These figures are based on overall institution budgets rather than Water Services specifically.

The following issues relating to organisational capacity were identified during workshops with MoIT and TT in March 2023:

- Local consultants often need to partner with foreign consultants to deliver water projects.
- Generally, local engineers have skills for designing small-scale water services but lack necessary skills for major trunk main infrastructure.
- It is not expected that local contractors have capacity to deliver the programme of works proposed under the *Water Supply, Wastewater and Stormwater Masterplan*.
- There are currently no local contractors with skills to deliver Smart water systems or advanced leak detection.

Foreign experience will be required to supplement local capacity to deliver the proposed programme of works for both design and construction.

5. Funding

Possible funding sources for the delivery and maintenance of water services infrastructure include the following, ranging from public (1) to private (9):

- 1. Local funding, through taxes, levies and user charges
- 2. National funding through budget allocation
- 3. Overseas Development Assistance through grants or loans
- 4. Financial institutions through grants or loans
- 5. Infrastructure bonds

6. Land Value Capture policies that allow public authorities to recover increases in land value to fund urban infrastructure and public services

- 7. Private sector through investors and developers
- 8. Impact investors
- 9. Philanthropy

In line with economic proposals developed as part of the TSP, it is generally preferred to fund from public sources, and introduce funding from the private sector to account for any funding gaps which exist. Initially funding is expected to be allocated under the 13th (2024-2029) and 14th (2029-2034) Five Year Plans.

Overseas Development partners are already involved in several Water Services projects in Thimphu and would be expected to continue through the implementation of the TSP and *Water Supply, Wastewater and Stormwater Masterplan*. Existing partners and projects include:

- Asian Development Bank: Water Flagship Programme
- World Bank Group: Draft Roadmap to Non-revenue Water Management
- United Nations Development Programme: Climate Change Preparation of the National Adaptation Plan

Appendix A

Combined Project List, MCA and Prioritisation

h h									Operations + Maintenance	Public health + community	Economic benefits	Environmental /	Client priority	Priority
br						How long does project		Capital costs		Nurture community -		Sustainabiility Cultivate Balance -		Prioritisation (when does it
b b		Location				implementation take Quick win = 0-2 years	(e.g. does the project	VERY LOW = <500k USD	costs (ANNUAL)		Create opportunity -			need to start)
Norm Norm </td <td>Strategy</td> <td></td> <td></td> <td>Intervention Name</td> <td>Description</td> <td>Short term = 2-5 years</td> <td>earlier/later than the</td> <td></td> <td></td> <td></td> <td></td> <td>Creating environmental benefits (healthy</td> <td></td> <td>Very high (immediately) High (within 2 years)</td>	Strategy			Intervention Name	Description	Short term = 2-5 years	earlier/later than the					Creating environmental benefits (healthy		Very high (immediately) High (within 2 years)
No. No. <td>-</td> <td></td> <td>measure / Services</td> <td></td> <td>· ·</td> <td>Medium term = 5-10 year Long term = 10+ years</td> <td>other projectsin the same strategy?) (critical</td> <td>MEDIUM = 1.5 - 3 million USD HIGH = 3 - 5 million USD</td> <td>LOW = 25-50k USD MED = 50 - 100k USD</td> <td>+ healthy neighborhoods,</td> <td>in economic growth, job creation + livelihoods,</td> <td>ecosystems, cleaner air +</td> <td>as a key priority</td> <td>Medium (within 5 years)</td>	-		measure / Services		· ·	Medium term = 5-10 year Long term = 10+ years	other projectsin the same strategy?) (critical	MEDIUM = 1.5 - 3 million USD HIGH = 3 - 5 million USD	LOW = 25-50k USD MED = 50 - 100k USD	+ healthy neighborhoods,	in economic growth, job creation + livelihoods,	ecosystems, cleaner air +	as a key priority	Medium (within 5 years)
Normal							dependencies)	VERY HIGH = 5+ million USD			worker productivity			Very low (within 20 years)
Name Note Note </td <td></td> <td></td> <td></td> <td></td> <td>Create Smart water networks by installing monitoring devices throughout the distribution network and at</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Create Smart water networks by installing monitoring devices throughout the distribution network and at									
Subset				SCADA and Smart Water Networks	storage reservoirs. SCAUA upgrades proposed throughout the system include: online meters and pump controls at WTPs, chlorine residual monitoring at storage reservoirs, and water level monitoring at storage			Medium	Medium	High	Medium	High	Low	LOW
Main and the matrix and the	Water Supply / Wastewater - Network Water Supply - WTP upgrades	City-wide City-wide	Infrastructure Infrastructure	Flow Meters at All WTPs	reservoirs. Install new inlet and outlet flow meters or replace all malfunctioning flow meters.	Short-term Quick-win		Very Low	Very Low	High	High	High	N/A	VERY HIGH
Name	Water Supply - WTP upgrades	City-wide			Install inlet and outlet turbidity online meters.			Very Low	Very Low		Medium	Low	N/A	VERY HIGH
DecisionDecisi		Lity-wide										mediain		VERTHIGH
Marchard Main Main <td>Water Supply - WTP upgrades</td> <td>City-wide</td> <td>Infrastructure</td> <td></td> <td></td> <td>Short-term</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Water Supply - WTP upgrades	City-wide	Infrastructure			Short-term								
Name No. No. </td <td>Water Supply - WTP upgrades</td> <td>City-wide</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>HIGH</td>	Water Supply - WTP upgrades	City-wide						,	,					HIGH
Char Control Contro Control <thcontrol< th=""></thcontrol<>														VERTHIGH
And matrix And ma	Water Supply - WTP upgrades	City-wide	Infrastructure	WTPs		Quick-win								
Name Name </td <td>Water Supply - WTP upgrades</td> <td>City-wide</td> <td>Infrastructure</td> <td></td> <td>pumps and filter feed pumps based on storage tank levels.</td> <td>Short-term</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Water Supply - WTP upgrades	City-wide	Infrastructure		pumps and filter feed pumps based on storage tank levels.	Short-term								
Note of the sector Note of the	Water Supply - WTP upgrades	North	Infrastructure	On Network Pressure		Short-term		Very Low	Very Low	Medium	Medium	Low	N/A	VERY HIGH
Matrix	Water Supply - WTP upgrades	City-wide	Infrastructure	Automatic Control Programs for Backwashing Operation Regimes for All WTPs	Make an automatic program to control backwashing pump based on the filter pressure, turbidity and backwashing duration and frequency.	Short-term		Very Low	Low	Medium	Low	Low	N/A	MEDIUM
Constraint Constraint <thconstraint< th=""> Constraint Constra</thconstraint<>	Water Supply - WTP upgrades	City-wide	Infrastructure	Run and Stop Status and Control of Pumps for all WTPs from SCADA	Monitor and control pumps operation from SCADA.						Medium			LOW
Matrix		North	Infrastructure	Juneshina WTP - Repair Leakages	Repair leaks from tanks and pipes.					Medium	low		N/A	HIGH
Chicker (spice) Conditional (spice) <thconditional (spice)<="" th=""> Conditin (spice)</thconditional>	Water Supply - WTP upgrades	Central		Motihang WTP - Sedimentation tank	Retrofit sedimentation tank with lamella.				Low		Medium	Low		MEDIUM
Normal		North		Taba WTP - Filters	Upgrade BioBall filters to 7.5MLD.	Short-term				Medium			N/A	VERY HIGH
Marce Marce <t< td=""><td></td><td></td><td></td><td>Sludge Management for All WTPs (Except for Chamgang Old WTP and</td><td></td><td></td><td></td><td></td><td>A411</td><td>Mar.*</td><td></td><td></td><td>N/2</td><td></td></t<>				Sludge Management for All WTPs (Except for Chamgang Old WTP and					A411	Mar.*			N/2	
Norm Norm </td <td>Water County, 10770 consider</td> <td>Chundre</td> <td>Information</td> <td>Jungshina WTP which have Sludge Drying Beds and Sludge Lagoons, Respectively)</td> <td>inlet of WTP if individual sludge treatment facility is to be pursued.</td> <td>Charle Income</td> <td></td> <td>Low</td> <td>Medium</td> <td>Medium</td> <td>Low</td> <td>Medium</td> <td>N/A</td> <td>LOW</td>	Water County, 10770 consider	Chundre	Information	Jungshina WTP which have Sludge Drying Beds and Sludge Lagoons, Respectively)	inlet of WTP if individual sludge treatment facility is to be pursued.	Charle Income		Low	Medium	Medium	Low	Medium	N/A	LOW
Mathematical				Champane Old WTP and Jungshina WTP - Recovery Line for Supercentert	Install a recovery line for the effluent from the sludge drying bed of Chamgang Old WTP and overflow of			Very Low	Verviow	law	low	Medium	N/A	HIGH
Name Name Lange Lange <thl< td=""><td>Water Supply - WTP upgrades</td><td>South & Central</td><td>Infrastructure</td><td></td><td>sludge lagoon of Jungshina WIP to be recycled back to its respective WIP inlet.</td><td>Quick-win</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></thl<>	Water Supply - WTP upgrades	South & Central	Infrastructure		sludge lagoon of Jungshina WIP to be recycled back to its respective WIP inlet.	Quick-win		-						
Brief production Note Note <td>Water Supply - WTP Operational Improvements</td> <td>City-wide</td> <td>Soft measure</td> <td></td> <td>water treatment plants.</td> <td>Quick-win</td> <td></td> <td>Very Low</td> <td></td> <td>-</td> <td>Very low</td> <td>Very Low</td> <td></td> <td></td>	Water Supply - WTP Operational Improvements	City-wide	Soft measure		water treatment plants.	Quick-win		Very Low		-	Very low	Very Low		
And And And And and any	Water Supply - WTP Operational Improvements	City-wide	Soft measure	Raw Water Quality Testing at all WTPs	Perform water quality tests for all parameters required by EU DWR (see parameters list and frequency of testing).	Quick-win		Very Low	Low	High	Low	Very Low	N/A	MEDIUM
Mathem					Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis									
Mark and the state of the				Sampling Plan and Testing Procedure for all WTPs	for all parameters required by Bhutan DWQS as a minimum for all water treatment plants and distribution network. This plan to be updated based on above raw water quality testing.			Very Low	Very Low	Very High	Very low	Very Low	N/A	HIGH
Image and product of the pr	Water Supply - WTP Operational Improvements	City-wide	Policy			Quick-win								
Number length and spectra spe	Water Supply - WTP Operational Improvements	City-wide	Soft measure		coagulant and flocculant concentration vs raw water turbidity.	Quick-win		-				Very Low		
Nine of participants Non- Space of participants Space of par		City-wide			proper operation and continuity of services.					-				
No. 100 mm No. 100	Water Supply - WTP Operational Improvements Water Supply - WTP Operational Improvements	City-wide City-wide	Soft measure	Filter Inspections at All WTPs Topping-up of Filters Appually or As Needed	Ton-un filters media as pecessary or annually	Quick-win Quick-win			Very Low	High High	Very low	Low Very Low		HIGH
Main and Mark Mark Mark Mark Mark Mark Mark Mark					Consider having plant manager, chemist or chemical technician, and process engineer to provide relevant					Č.				
Main digeneration Mode Mode <th< td=""><td>Water Supply - WTP Operational Improvements</td><td></td><td></td><td></td><td>WTPs.</td><td>Short-term</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>LOW</td></th<>	Water Supply - WTP Operational Improvements				WTPs.	Short-term								LOW
Image: State in the state	Water Supply - WTP Operational Improvements Water Supply - WTP Operational Improvements		Soft measure Soft measure	Chamgang Old WTP - Monitor Turbidity Jungshina WTP - Pumps	Monitor turbidity to check BioBall Filter (BBF) performance especially at higher flows. Check pumps as pumps have already reached its design life and repair or replace as necessary.			Very Low Very Low	Very Low Very Low		Very low Low	Low	N/A N/A	HIGH
Normal Mathematic Market Ma					Monitor free chlorine residual at treated water storage tank outlet to ensure water quality meets					High	Low			MEDIUM
Markade					Investigate the root cause of intake structures frequent disconnection or damage and rectify as this is			Very low	law	Hinh	Madium	low		нісн
Marcial Marcial Machan Manual Machan Manual Marcial Marcial <td>Water Supply - WTP Operational Improvements</td> <td>North</td> <td>Soft measure</td> <td></td> <td></td> <td>Short-term</td> <td></td> <td>very cow</td> <td>1.011</td> <td></td> <td>mediam</td> <td>LOW</td> <td>11/6</td> <td></td>	Water Supply - WTP Operational Improvements	North	Soft measure			Short-term		very cow	1.011		mediam	LOW	11/6	
				Taba WTP - Monitor Turbidity	Continue monitoring the turbidity at raw water and the quality of water atter the lamella clarifier to ensure the flocculation tank and lamella clarifier continue to meet the required treatment performance.			Very Low	Very Low	Medium	Low	Low	N/A	HIGH
Mathematical problemMarket and any strateging of the strat				Mahikana M70 Characterial Internets				Manulau	Manufactor	Madau	Madium	1.000	N/A	UP IN LINE I
Marce	Water Supply - WTP	Central	Soft measure		beyond the assessed capacity. Check flocculation tanks size if retention time is met at 40min for 10MLD current flow. If this retention	Quick-win							-	
MarketMark	Water Supply - WTP	Central	Soft measure		time is not met, reduce production flow during high turbidity.	Quick-win								
Normal Normal<	Water Supply - WTP	North	Soft measure	Dechencholing WTP - Flow meters	upgrades or modifications.	Quick-win		Very Low	Very Low	Medium	Very low	Low	N/A	HIGH
Wind profit Oracle Oracle Field State of the state of				Babena WTP - Design Check	Check for flocculation tank, coagulant/flocculant dosing tanks and pumps and chlorination. Install the			Very Low	Very Low	Medium	low	law	N/A	HIGH
Image: state in the state	Water Supply - WTP	Central	Soft measure		it is slightly undersized	Quick-win			. ,				,	
With right standsOp with any standsInduction of the production of t				Increase Water Storage	existing storage reservoirs or by additional storage by new storage reservoirs close to existing WTPs, which			Very High	Low	High	High	Medium	Medium	LOW
Image: status	Water Supply - Network	City-wide	Infrastructure		are also at higher elevations. Reducing leakage, illegal connections and metering inaccurracies from >50% NRW to <15%. Proceed	Medium-term								
Result Space Space <t< td=""><td>Water Sunnis - Network</td><td>Cituraida</td><td>Infrartructure</td><td>Reduce Non Revenue Water</td><td>involves collecting data from flow and pressure monitoring to help to identify leaks in the system, repairs,</td><td>Madium-term</td><td></td><td>High</td><td>Very Low</td><td>Very High</td><td>Very High</td><td>Very High</td><td>Very High</td><td>HIGH</td></t<>	Water Sunnis - Network	Cituraida	Infrartructure	Reduce Non Revenue Water	involves collecting data from flow and pressure monitoring to help to identify leaks in the system, repairs,	Madium-term		High	Very Low	Very High	Very High	Very High	Very High	HIGH
Lend of parket Upgrade large the second parket park space (second park space) is the interpark and in the space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space) is the interpark space (second park space) is the interpark space (se	www.sappy-network	stywide	aanascructure		Upgrades to the water supply infrastructure, including hydrant installation, storage reservoir or supply	wearanneerm								
Notice Instance	Water Supply - Network	City-wide	Infrastructure	Upgrade Existing Network to Cater for Firefighting	improvements, and adequate water main pipe capacities, allow the network to deliver necessary flows	Medium-term		Medium	Very Low	Very High	Medium	Medium	Very High	HIGH
Nate space Persure Reduction All coalision statules water region returned with the pressure ref(col) exclusion statule during beneficies, in the pressure ref(col) exclusion statule during beneficies, in the reference of the reference				Protect Watermains	Divert and protect water supply trunk lines which could be affected by natural hazards such as flooding or	Adaptives to a		High	Low	High	Medium	Medium	Medium	LOW
Water Supply-Interved Optimizer Interver	water suppry - Network	City-Wide	nin astructure		At locations within the water supply network with high pressures (~50 locations initially identified),	weuum-term				-				
Name Name Partial balance Description Description Restrict space Restrint space Restrint space <th< td=""><td>Water Supply - Network</td><td>City-wide</td><td>Infrastructure</td><td>Pressure Reduction</td><td>pressure reducing valves (PRVs) can be installed to limit the pressure levels and to reduce leakage losses in the network.</td><td>Quick-win</td><td></td><td>Low</td><td>Very Low</td><td>High</td><td>High</td><td>Very High</td><td>Very High</td><td>VERY HIGH</td></th<>	Water Supply - Network	City-wide	Infrastructure	Pressure Reduction	pressure reducing valves (PRVs) can be installed to limit the pressure levels and to reduce leakage losses in the network.	Quick-win		Low	Very Low	High	High	Very High	Very High	VERY HIGH
with start with start start <td></td>														
Name Image Image <th< td=""><td>Water Supply - Network</td><td>North</td><td>Infrastructure</td><td>Pump Station to Serve Community Supply DMA</td><td>Booster pump station to serve Community Supply DMA from Dechencholing Tank 1.</td><td>Short-term</td><td>Dling WTP upgrade</td><td>Low</td><td>Low</td><td>High</td><td>High</td><td>Low</td><td>High</td><td>MEDIUM</td></th<>	Water Supply - Network	North	Infrastructure	Pump Station to Serve Community Supply DMA	Booster pump station to serve Community Supply DMA from Dechencholing Tank 1.	Short-term	Dling WTP upgrade	Low	Low	High	High	Low	High	MEDIUM
Network Network Performance Performance Restruction <		Central	Infrastructure	Pump Station to Serve Changiji 2 DMA	Booster pump station to serve Changiji 2 DMA from Changiji Tanks.	Medium-term	Reservoir upgrades and	Low	Low	High	High	Low	High	MEDIUM
Water Supply Network Out Instructure Number Supply Network Nume Supply Network Nume Suppl				Pump Station to Serve Lubding DMA	Booster pump station to serve Lubding DMA from Lungtenphu Tanks.		Reservoir upgrades and	Low	Low	High	High	Low	High	MEDIUM
Water Supply. Network Central Infantor Madium term National Control Information (Section (Section Information (Section (Sectin (Sectin (Section (Section (Section (Sectin (Section							Reservoir upgrades and							MEDIUM
ker ker ker ker ker points are to monitor the presume machines upper grantes and the in the higher paints and on the higher paints and higher paints and the higher paints and higher paints and the higher paints and the higher paints and the higher paints and the higher paints and higher paints and the h	Water Supply - Network	Central	Infrastructure	Tong Junior to JEINE THS 2 DWA		Medium-term	NRW reduction	LOW	LUW	ngu	nigi	LOW	rigi	MEDIUM
Image: space spac					points are to monitor the pressure reducing valves set pressure and those in the highest points are to									
Water Supply-Network Crywide Infrastructure Subscription (Sample Sample S				Water Supply Flow and Pressure Monitoring	monitor that the minimum supply pressure is being provided to the network.			Low	Very Low	High	High	Low	High	HIGH
Water Space Option Instance Instance Option Option Option Option Space Sp					monitor usage, at the outlet of pumps to control pump operation and at the outlet of WTPs to measure		Prior to all other Water				-			
Water Spiply Network Korth Infrastructure Performance and pression to Southern Extension Junghina WP during periods of low spiply South or pression Luw Vel DW Vel DW Meetual Meet	Water Supply - Network	City-wide	Infrastructure		production capacity. Quick									
Water Supply Network South on Infrastructure Extension to Southen Extensin to So	Water Supply - Network	North	Infrastructure	Pipe Extension to Connect Taba WTP and Jungshina WTP	Junarhina WTR during pariods of low supply Short-			Low	Very Low	High	Medium	Medium	Medium	HIGH
Mar Supply- Network South Infrastructure DMAs and densition from Changang New to Changang Old to support water availability (1.9.%m of pipel). Network					Extension to supply Rama (1.63km of pipes), Debsi (1.02km of pipes), Serbithang (360m of pipes),		Reservoir upgrader and							
Participation of the second se		I		Watermain Extension to Southern Extension	DMAs and extension from Chamgang New to Chamgang Old to support water availability (1.93km of		NRW reduction. Access	Medium	Low	High	Medium	Medium	N/A	LOW
	water supply - Network	south	infrastructure			Long-term	Intrastructure to Rama Reservoir upgrades,							
Water Supply-Network North Infrastructure Infrastructure Community Supply (12)stm of pipe); and Dangina Proposed (115km of pipe); Make Supply (12)stm of pi	Water Supply - Network	North	Infrastructure	Watermain Extensions in Northern suburbs	(2.07km of pipes), Community Supply (1.29km of pipes) as Weil as Pamtsho 1 (270m of pipes), Pamtsho 2 (2.07km of pipes), Community Supply (1.29km of pipes) and Dangrina Proposed (1.15km of pipes) DMAs.	Short-term	NRW reduction and Dling WTP upprode	Medium	Low	High	Medium	Low	High	LOW

								Operations + Maintenance (Financia)	Public health + community	Economic benefits	Environmental / Sustainability	Client priority	Priority
					How long does project	Notes on phasing	Capital Costs (Financial) Capital costs	(Financia) Operations + maintenance costs (ANNUAL)	Nurture community -	Create opportunity -	Sustainabiility Cultivate Balance -		Prioritisation (when does it
	Location	Infrastructure /			Quick win = 0-2 years	(e.g. does the project need to come	VERY LOW = <500k USD		Protecting and enhancing		Creating environmental	Client has raised	need to start) Very high (immediately)
Strategy	North / Central /	Policy / Soft measure / Services	Intervention Name	Description	Short term = 2-5 years Medium term = 5-10 year	earlier/later than the other projectsin the	LOW = 500k - 1.5million USD MEDIUM = 1.5 - 3 million USD	VERY LOW = <25k USD LOW = 25-50k USD	diverse communities, equitable + healthy neighborhoods,	Short to long-term benefits in economic growth, job creation + livelihoods,	benefits (healthy ecosystems, cleaner air +	this intervention as a key priority	High (within 2 years) Medium (within 5 years)
	South / City-wide	measure / Services			Long term = 10+ years	same strategy?) (critical dependencies)	HIGH = 3 - 5 million USD VERY HIGH = 5+ million USD	MED = 50 - 100k USD HIGH = 100k - 250k USD	leading to improvements in quality of life for city residents	creation + livelihoods, worker productivity	water), reducing carbon	as a key priority	Low (within 10 years) Very low (within 20 years)
								VERY HIGH = 250k+ USD	quality of life for city residents		emissions		very low (within 20 years)
Water Supply - Network	Central	Infrastructure	Watermain Extensions to New Central DMAs	Extension to supply Workshop (220m of pipes), Lubding (250m of pipes), Changiji 2 (1.58km of pipes) and Changzamtog (1.34km of pipes), Bangdu Areas (190m of pipes) and YHS 2 (550m of pipes) DMAs.	Short-term	Reservoir upgrades, NRW reduction	Medium	Low	High	Medium	Low	High	LOW
			Watermain Reconfiguration for Water Source Availability	Network reconfiguration to balance the demand from seven DMAs with the lean season availability of water from their respective WTPs. These include Pamtsho 1, Babesa Right, Above Old Highway, Babesa			Law	Very Low	High	Medium	Medium	N/A	HIGH
Water Supply - Network	City-wide	Infrastructure		Left, Bangdu Residents and Bangdu Area Left and Changzamtog. Rezoning of Chamgang Old WTP demand to Taba WTP by reinforcing sections of the mains from the Taba	Medium-term	NRW Reduction		.,.	-				
Water Supply - Network	North and Central	Infrastructure	Watermain Upgrades for Increased Supply from Taba WTP	WTP to the YHS Tanks. New abstraction from Wang Chhu at Begana, new trunk main from Begana to Rama. All residents served	Long-term		Low	Low	Medium	Medium	Low	N/A	LOW
			Begana WTP and New Trunk Main to Rama	by Begana and Taba WTPs, both fed from Wang Chhu, replacing all other WTPs to provide long term resiliency if existing sources cannot provide reliable supply. The main is composed of twin and triple		Long term monitoring of	Very High	Medium	High	High	Medium	N/A	VERY LOW
Water Supply - Network	City-wide	Infrastructure		parallel pipes. Water Demand Management is a strategy for managing water resources, which focuses on reducing water	Long-term	sources							
Water Supply	City-wide	Soft measure	Water Demand Management	demand by encouraging efficient usage, which is achieved by education and offering targeted incentives that promote fair and sustainable water usage.	Medium-term		Very Low	Very Low	High	High	Very High	Medium	VERY HIGH
Wastewater / Stormwater - Network	City-wide	Infrastructure	Disconnect Stormwater from Wastewater	Disconnect stormwater drains from the wastewater network to avoid the treatment of stormwater at the WWTPs.	Short-term		Medium	Very Low	High	High	High	High	HIGH
Wastewater / Stormwater - Network	City-wide	Infrastructure	Disconnect Wastewater from Stormwater	Disconnect wastewater drains from the stormwater network to avoid polluting the environment and to improve public and ecosystem health.	Short-term	Disconnect SW from WW first	Medium	Very Low	Very High	High	Very High	High	HIGH
wastewater / stornwater - wetwork	City-wide	initastructure	Ammonia Removal for All WWTPs	Waste Assimilative Capacity assessment of Wang Chhu to determine maximum ammonia concentration	Shoreterm	www.iiist	Law	Medium	Medium	Low	High	N/A	LOW
Wastewater - WWTP Upgrades	City-wide	Infrastructure	Ammonia Removal for All WW IPS	for 'Good Status'. Upgrades to existing WWTPs to reduce ammonia to acceptable levels.	Short-term		LOW	Medium	Medium	LOW	High	N/A	LOW
			Phosphate (MRP) Removal for All WWTPs	Waste Assimilative Capacity assessment of Wang Chhu to determine maximum MRP concentration for 'Good Status'. Upgrades to existing WWTPs to reduce MRP to acceptable levels.			Low	Medium	Medium	Low	High	N/A	LOW
Wastewater - WWTP Upgrades	City-wide	Infrastructure		Investigate odour issues at each WWTP and provide a good ventilation and OCU (except Babesa which	Shoreterm								
Wastewater - WWTP Upgrades	City-wide	Infrastructure	Odour Control Units (OCU) for All Existing WWTPs	already has OCU). Consider adding a trash bin with the lid for all WWTPs and have a proper disposal method of the screenings.	Quick-win		Low	Low	High	Low	Medium	N/A	MEDIUM
			SCADA and Instruments for All WWTPs	Install influent, effluent and Return Activated Sludge (RAS) and Waste Activated Sludge (WAS) flowmeters which are not available on site. Install online pH and DO meter as well as turbidity/TSS analyser, if			Low	Low	Medium	Medium	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	City-wide	Infrastructure		necessary. All the instruments should be connected to the SCADA control. (Babesa excluded as already provided)	Short-term								
Wastewater - WWTP Upgrades	North	Soft measure	Safety Plan for Recommissioning of Dechencholing WWTP	Possible produced toxic gases (i.e. hydrogen sulphide) in the shutdown aeration tank hence it requires safety plan before recommissioning the plant.	Quick-win		Very Low	Very Low	Medium	Very Low	High	N/A	VERY HIGH
			Dechencholing WWTP MBBR Tanks	Check the effluent BOD while operating conditions of DO and pH are maintained. If it is not meeting the standard, provide additional media or increase air flow or add another unit of MBBR.			Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades Wastewater - WWTP Upgrades	North North	Infrastructure Infrastructure	Diffusers Replacement at Dechencholing WWTP	standard, provide additional media or increase air flow or add another unit of MBBR. Possible clogging of diffusers of Dechencholing WWTP MBBR and reached its design life.	Short-term Quick-win		Very Low	Very Low	High	Low	High	N/A	VERY HIGH
Wastewater - WWTP Upgrades	North	Infrastructure	Dechencholing WWTP MBBR Media	Wash the media and replenish up to its design volume or replace the worn-out media. If the effluent has high TSS, change the configuration of settler like the slope to increase the settling area	Quick-win		Very Low	Very Low	High	Low	High	N/A	
Wastewater - WWTP Upgrades	North	Soft measure	Dechencholing WWTP Tubedek Settler	or provide additional unit. Check the size of the filters, if it has enough capacity to cater the 2032 flow, replace the missing media, if	Quick-win		Very Low	Very Low	Medium	Low	Medium	N/A	VERY HIGH
Wastewater - WWTP Upgrades	North	Infrastructure	Dechencholing WWTP Filter Media	not, replace the filters.	Quick-win		Very Low	Very Low	High	Low	Medium	N/A	VERY HIGH
Wastewater - WWTP Upgrades		Infrastructure	Sludge Holding Tank in Dechencholing WWTP	Check if there is one sludge holding tank on site and if its capacity is sufficient to handle the sludge while the plate and frame filter press is running. If there's none, construct a sludge holding tank	Short-term		Very Low	Low	Medium	Low	High	N/A	HIGH
Wastewater - WWTP Upgrades Wastewater - WWTP Upgrades	North & Central	Infrastructure	Overloaded Screens in Taba and Lungtenzampa WWTPs	If there is a lot of solid being carried out after the screens, provide additional unit of screens	Quick-win		Very Low	Low	Low	Low	High	N/A	MEDIUM
Wastewater - WWTP Upgrades	North	Infrastructure	Taba WWTP Pump Repair/Replacement	Conduct full maintenance of troubleshooting. If it cannot be recovered and has insufficient flow to cater the 2032 flow, replace the damaged pumps	Quick-win		Very Low	Low	Medium	Low	High	N/A	HIGH
Wastewater - WWTP Upgrades	North	Infrastructure	Taba WWTP Eco-line	Check the effluent BOD while operating conditions of DO and pH are maintained. If it is not meeting the standard, consider add another train of eco-line.	Short-term		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	North	Infrastructure	Taba WWTP Disinfection Well	If the effluent has faecal coliform, increase the chlorine dosage or add another tank with sufficient capacity to have enough contact time.	Quick-win		Very Low	Very Low	Medium	Low	High	N/A	VERY HIGH
Wastewater - WWTP Upgrades	North	Infrastructure	Sludge Treatment in Taba WWTP	Check the dewatering unit of Jungshina if there's an excess capacity. If yes, treat it in Jungshina, if no, provide additional unit.	Quick-win		Very Low	Low	Medium	Low	High	N/A	HIGH
			Jungshina WWTP SBR	Check the effluent BOD while operating conditions of DO and pH are maintained. If it is not meeting the standard, adjust the operation by modifying inter-cycle phase duration or replace the activated sludge into			Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades Wastewater - WWTP Upgrades	North	Infrastructure Infrastructure	Jungshina WWTP Auxiliaries	granular sludge or provide additional unit of SBR. Check the auxiliaries if it is sufficient to increase the flow, if not, provide additional unit.	Short-term Short-term		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	North & Central	Infrastructure	Dechencholing, Langjophakha & Lungtenzampa WWTP Disinfection Well	Possible short circuiting happens in a disinfection well/treated water tank. If the effluent has faecal coliform, provide additional baffle or mixer.	Quick-win		Very Low	Very Low	Medium	Low	Medium	N/A	VERY HIGH
Wastewater - WWTP Upgrades	North	Infrastructure	Langjophakha WWTP Minor Upgrades	Check the capacity of all other components e.g. auxiliaries, filters, that were not hydraulically assessed if it sufficient to cater 2032 flow. If not, provide additional unit of these equipment.	Short-term		Very Low	Very Low	Medium	Low	Medium	N/A	VERY HIGH
Wastewater - WWTP Upgrades	Central	Infrastructure	Sludge Treatment in Langjophakha and Lungtenzampa WWTP	Provide a dewatering unit. Pumps leaking: Conduct full maintenance of troubleshooting. If it cannot be recovered and has insufficient	Quick-win		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	Central	Infrastructure	Lungtenzampa WWTP Pumps	flow to cater the 2032 flow, replace the damaged pumps.	Quick-win		Very Low	Low	Medium	Low	High	N/A	HIGH
Wastewater - WWTP Upgrades	Central	Infrastructure	Lungtenzampa WWTP Diffusers	Possible clogging of diffusers of Lungtenzampa WWTP Aeration Tanks and Wastewater Storage Tanks. Investigate and replace diffusers if required.	Quick-win		Very Low	Very Low	Medium	Low	High	N/A	VERY HIGH
Wastewater - WWTP Upgrades	Central	Infrastructure	Lungtenzampa WWTP Sedimentation Tank	Sedimentation tank is not reaching its design capacity. If the effluent has high TSS, provide a lamella in the tank or create additional unit.	Quick-win		Very Low	Very Low	Medium	Low	Medium	N/A	VERY HIGH
			Coarse Screen in Babesa WWTP	Conduct full maintenance of troubleshooting and validate actual flow measures coming from the new sewer line. If the coarse screen is insufficient and there is a lot of solid being carried out after the screen,			Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	South	Infrastructure		replace or add unit. Potential insufficient capacity of existing pumps based on the actual flow from the new sewer line, provide	Quick-win								MEDILIM
Wastewater - WWTP Upgrades	South	Infrastructure	Wastewater Pumps in Babesa WWTP	additional unit or replace with higher capacity. If it is validated that this is sufficient, no necessary actions needed.	Quick-win		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	South	Infrastructure	Coarse, Medium and Fine Screens in Babesa WWTP	Validate the flow from the old sewer line and if it is higher than the capacity of these screens, provide additional unit. If it is lower, no action needed.	Quick-win		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
			Babesa WWTP SBR and Blower	Possible Insufficient Capacity. Check the effluent BOD while operating conditions of DO and pH are maintained. If it is not meeting the standard, adjust the operation by modifying inter-cycle phase duration			Law	Low	High	Low	High	N/A	MEDIUM
Wastewater - WWTP Upgrades	South	Infrastructure	UNCLUE WWIF SDR dilu DUWCI	or replace the activated sludge into granular sludge or provide additional unit of SBR. If the DO is not reaching its required value, provide additional unit.	Short-term					5.5W	80		MCO/OM
Wastewater - WWTP Upgrades	South	Infrastructure	Babesa WWTP Disinfection Well	If the effluent has faecal coliform, increase the chlorine dosage or provide additional baffle or mixer.	Quick-win		Very Low	Very Low	Medium	Low	Medium	N/A	VERY HIGH
Wastewater - WWTP Upgrades	South	Infrastructure	Babesa WWTP Sludge Holding Tank	Identify the flow of the waste activated sludge, if it insufficient to cater WAS with enough time, provide additional sludge holding tank.	Quick-win		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	South	Infrastructure	Babesa WWTP Gravity Sludge Thickener and Centrifuge	Provide additional polymer dosing or provide additional unit of thickener and dewatering unit to manage insufficient capacity.	Quick-win		Very Low	Low	Medium	Low	Medium	N/A	MEDIUM
Wastewater - WWTP Upgrades	South	Infrastructure	Additional 6 MLD Babesa WWTP	Provide additional units of tanks, equipment and auxiliaries or a modular WWTP with a capacity of 6 MLD.	Medium-term		Medium	Medium	High	Medium	High	Medium	LOW
Wastewater - WWTP Upgrades	City-wide	Infrastructure	Sludge Management	Provide sludge treatment facility for the whole city before disposing or use it as any product that can be produced from the sludge.	Medium-term		Law	Medium	Medium	Low	High	N/A	LOW
			Sampling Plan for All WWTPs	Investigate the performance of wastewater via developing sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters for influent and			Very Low	Low	High	Medium	Medium	N/A	HIGH
Wastewater - WWTP Operational Improvements	City-wide	Policy		effuent. Provide Plant Manager, Process and/or Electro-mechanical Engineers to ensure the continuous operation	Quick win			LUN		meanin			
Wastewater - WWTP Operational Improvements	Chundre	C=0	Skilled Personnel for All WWTPs	Provide Plant Manager, Process and/or Electro-mechanical engineers to ensure the continuous operation and efficiently running of the plant as well as with the assurance that the effluent is conforming to the standard. These personnel may be responsible for multiple WTPs.	Character and		Very Low	Medium	Medium	Medium	Medium	N/A	MEDIUM
	City-wide	Soft measure	Operation and Maintenance Manuals for All WWTPs	Develop Operation and Maintenance Manual for pumps, instruments, and other equipment to ensure	Short-term		Very Low	Very Low	Medium	Low	Low	N/A	HIGH
Wastewater - WWTP Operational Improvements	City-wide	Soft measure	All Non-functional WWTPs (Dechencholing, Lungtenzampa)	proper operation and continuity of services. Assess all equipment, auxiliaries, pipelines and cables that are not functioning as per specification.	Quick-win		Very Low	Very Low	High	Medium	Very High	N/A	VERY HIGH
Wastewater - WWTP	North & Central	Infrastructure	(and a second se		Quick win	1	L	,			,		

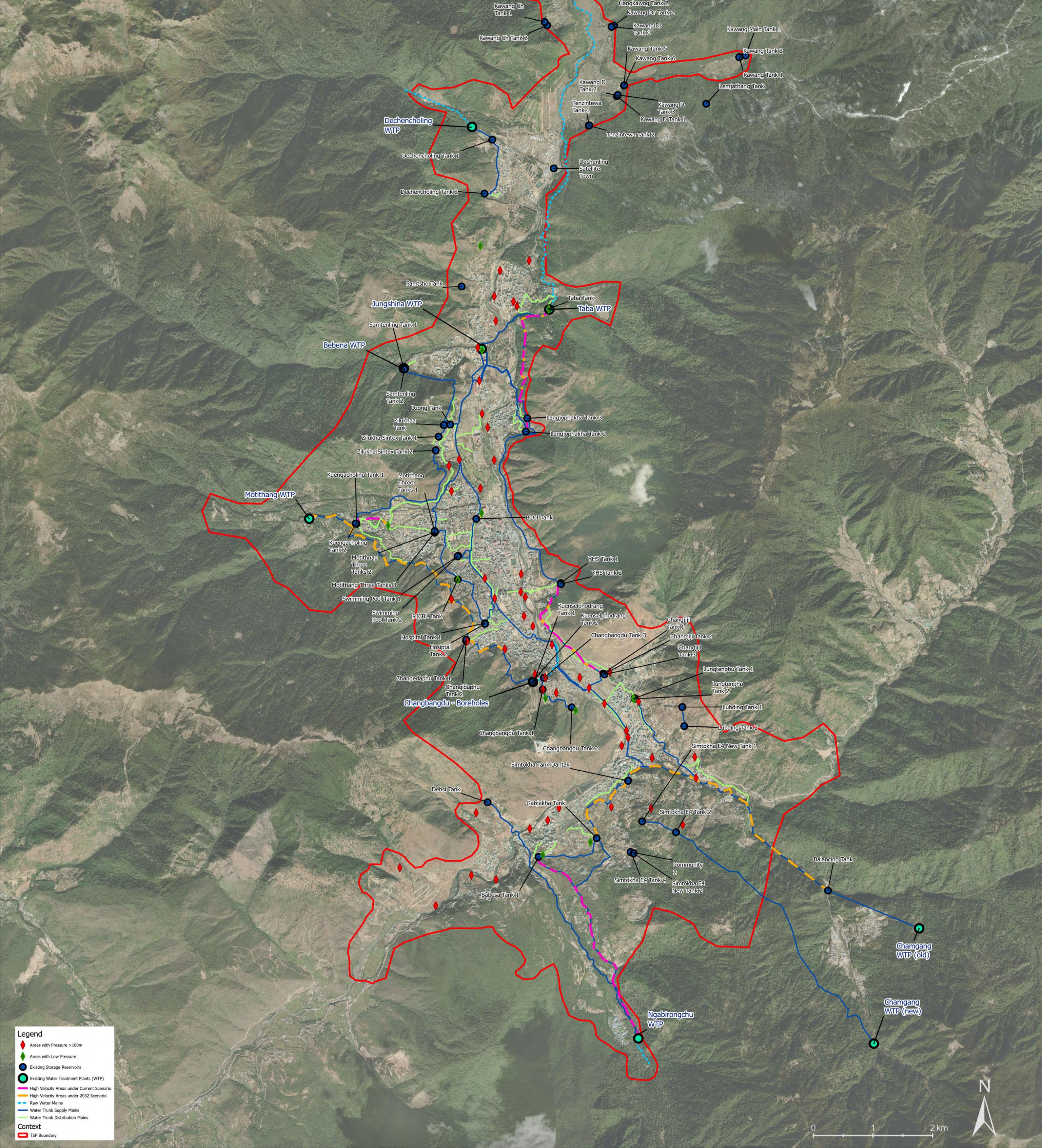
here here <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Capital Costs (Financial)</th><th>Operations + Maintenance (Financia)</th><th>Public health + community</th><th>Economic benefits</th><th>Environmental / Sustainabiility</th><th>Client priority</th><th>Priority</th></th<>								Capital Costs (Financial)	Operations + Maintenance (Financia)	Public health + community	Economic benefits	Environmental / Sustainabiility	Client priority	Priority
head		Location				implementation take	(e.g. does the project				Create opportunity -			
Image Image <t< td=""><td>Strategy</td><td></td><td></td><td>Intervention Name</td><td>Description</td><td></td><td></td><td>LOW = 500k - 1.5million USD</td><td></td><td></td><td></td><td></td><td></td><td>Very high (immediately) High (within 2 years)</td></t<>	Strategy			Intervention Name	Description			LOW = 500k - 1.5million USD						Very high (immediately) High (within 2 years)
Image with the set of the	Strategy				Description									
index index index <		South / City-wide				Long term = 10+ years								Low (within 10 years)
Name Name State <									VERY HIGH = 250k+ USD	quality of life for city residents		emissions		Very low (within 20 years)
And And </td <td></td>														
Main Mark Main				New WWTP in Hejo				High	High	Medium	Medium	High	High	VERY LOW
And Band Product of the sector of the					MLD, replacing Dechencholing, Taba, Jungshina, Langjophaka WWTPS		requiring significant	-				-	-	
Image Image Image <	Wastewater - WWTP	North	Infrastructure			Long-term	upgrades							
Name Name Second state Second state <th< td=""><td></td><td></td><td></td><td>New WWTP in Rama</td><td>New 1MLD NBS Wastewater Treatment faccility in Rama to serve Southern Extension 1 MLD</td><td></td><td>Servicing infrastructure</td><td>Low</td><td>Medium</td><td>Medium</td><td>Medium</td><td>High</td><td>N/A</td><td>LOW</td></th<>				New WWTP in Rama	New 1MLD NBS Wastewater Treatment faccility in Rama to serve Southern Extension 1 MLD		Servicing infrastructure	Low	Medium	Medium	Medium	High	N/A	LOW
And And And Processing of the second secon	Wastewater - WWTP	South	Infrastructure			Long-term	for Rama					-		
Marcial Marcial Mathematical Mathamaterical Mathematical Mathematical Mathamaterical Mathem														
Interview Optime Optim Opti				Wastewater Network Flow Monitoring				Low	Low	Medium	Medium	High	High	MEDIUM
Water March March March March March March March March March March March March	Wastewater - Network	City-wide	Infrastructure			Quick-win								
Image: And the stand s	Wastewater - Network	Central	Infrastructure	Upsizing of Wastewater Pipes in Central Area		Short-term		Medium	Low	High	Medium	High	High	MEDIUM
Unitarian				Unriging of Wastewater Riger in Olakha Area	1.8km existing wastewater mains from Helipad to Babesa WSP to be upsized to 600mm diameter to		Wastewater network	Madium	low	Hish	Medium	High	Medium	LOW
Instruction of the state of	Wastewater - Network	South	Infrastructure	oparing or mane water ripes in orania area	reduce risk of surcharging.	Short-term	flow monitoring	Wealum	LOW	rigii	mealan	nigii	Medium	LUNY
Instruction of the state of	1						Construction of							
Market Mark Ma				Wastewater Network Extension to Kabesa	Construction of 1.5km 160mm gravity pipe from Kabesa to Existing Dechencholing Network.			Low	Low	High	Medium	High	Medium	MEDIUM
And Parter based of the sector of the	Wastewater - Network	North	Infrastructure			Long-term								
Matrix Matri				Wartewater Network Extension in Pahera WWTP Catchment	Construction of 500m 250mm gravity pipe from Royal Bhutan Army to Existing Babesa Network.			law	Low-	Hinh	Medium	High	Medium	MEDIUM
And And Anderson And	Wastewater - Network	South	Infrastructure		Construction of 1500m 100mm force main from Depsi to Existing Babesa Network.	Long-term			1.011		in colori		meanan	Incolom.
Matrix Matrix Main Market <							Upgraded Babesa							
Ander Sense Sense <th< td=""><td>Wartewater - Network</td><td>South</td><td>Infrastructura</td><td>Wastewater Pump Station at Dechencholing</td><td>New WWPS to provide pressure from Dechencholing to northern sewer trunk mains.</td><td>Loon-term</td><td></td><td>Low</td><td>Low</td><td>Medium</td><td>Medium</td><td>High</td><td>Medium</td><td>MEDIUM</td></th<>	Wartewater - Network	South	Infrastructura	Wastewater Pump Station at Dechencholing	New WWPS to provide pressure from Dechencholing to northern sewer trunk mains.	Loon-term		Low	Low	Medium	Medium	High	Medium	MEDIUM
Water relation Solution Matrix definition Matrix defini	Hustewater - Hetwork	30001	innasciación			cong-term								
Answer Senser				Wastewater Pump Stations at Lungtenzampa and at Langjophakha	New WWPSs to provide pressure for crossing Wang Chhu from Lungtenzampa and at Langjophakha.			Low	Medium	Medium	Medium	High	Medium	LOW
And Ander Marchan and and and and and and and and and a	Wastewater - Network	South	Infrastructure			Long-term								
$\frac{1}{1} \left(\frac{1}{1} \right) \left(1$				Wastewater Pump Station at Depsi	New WWPS to provide pressure from Depsi to existing Babesa Trunks for treatment at Babesa WWTP.			Very Low	Medium	Medium	Medium	High	Medium	MEDIUM
Norther<	Wastewater - Network	South	Infrastructure			Long-term	sewer pipes							
Norther<							Construction of							
$\frac{1}{10000000000000000000000000000000000$				Northern Trunk Main - Rising Main Dechencholing to Taba	1,700m of 200mm diameter rising main to connect Dechencholing and Kabesa catchments to Taba.			Low	Low	Medium	Medium	High	Medium	MEDIUM
And the state of the stat	Wastewater - Network	North	Infrastructure			Long-term	upgrade of sewer pipes							
And the state of the stat					1 300m of 600mm diameter gravity main to connect lungshing and porthern catchments to the new		Construction of							
And the second seco				Northern Trunk Main - Gravity Mains from Jungshina to Northern WWTP			Northern WWTP,	Medium	Medium	Medium	Medium	High	Medium	LOW
Notes Notes <t< td=""><td>Wastewater - Network</td><td>Central</td><td>Infrastructure</td><td></td><td></td><td>Long-term</td><td>upgrade of sewer pipes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Wastewater - Network	Central	Infrastructure			Long-term	upgrade of sewer pipes							
Mathematication Control Space of the state of t		1					Construction of							
Mathematical		I		Northern Trunk Main - Rising Mains from Langjophakha to Northern WWTP	450m or 100mm dia Kising main to connect Langjophaka to the new WWTP.			Medium	Medium	Medium	Medium	High	Medium	LOW
Network	Wastewater - Network	Central	Infrastructure			Long-term								
Watcher Areance Optimize Instance	1			Wastewater Network Reconfiguration - Lungtenzampa to Babesa				Low	Low	Medium	Medium	High	Medium	MEDIUM
Notes Notes <t< td=""><td>Wastewater - Network</td><td>South</td><td>Infrastructure</td><td></td><td>Babesa WWTP.</td><td>Long-term</td><td></td><td></td><td></td><td></td><td></td><td>Ů</td><td></td><td></td></t<>	Wastewater - Network	South	Infrastructure		Babesa WWTP.	Long-term						Ů		
Notes Notes <t< td=""><td>1</td><td></td><td> </td><td></td><td></td><td></td><td>Construction of</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td></t<>	1						Construction of							
Water Cental Instance Instance Cental Instance Cental Centa Centa Cental <td></td> <td>1</td> <td></td> <td>Upsizing of Wastewater Pipes in Central Area (2nd Phase)</td> <td>60m of 300mm gravity pipe to reduce risk of surcharging at Dechencholing Influent.</td> <td></td> <td></td> <td>Low</td> <td>Low</td> <td>High</td> <td>Medium</td> <td>High</td> <td>High</td> <td>MEDIUM</td>		1		Upsizing of Wastewater Pipes in Central Area (2nd Phase)	60m of 300mm gravity pipe to reduce risk of surcharging at Dechencholing Influent.			Low	Low	High	Medium	High	High	MEDIUM
Name	Wastewater - Network	Central	Infrastructure			Long-term	upgrade of sewer pipes							
Water Variant		1		Unriging of Wartswater Riger in Olakha Area (2nd Rhare)	500m of 200mm gravity pipe to reduce risk of surcharging at Mapho Lam			law	low.	Hinh	Medium	High	Medium	MEDIUM
Stormater Oppide Infature Variable (unit to watch under stormation (under stormation (unit to watch under stormat	Wastewater - Network	South	Infrastructure			Long-term								in colori
300 matrix 0 0 0 0 0 0 0 0 0 0		an 11		Daylighting Culverted Watercourses	Daylight existing culverted streams through urban areas, enhancing amenity and biodiversity benefits and			High	Low	High	High	High	Medium	LOW
Somewater Crywide Infrastructure devices (Justing Participants) and Solita interview devices (Justing Participants) and So									Verviow			-	Medium	VERYHIGH
Normatic Operating Statistical bits / Dataget System: Sud0 / Implementation and bioderestry, Sud5 may include animate intraventing, elification system, filter strateging, elification strateging, elification strateging, elification strateging, elification strateging, elification strateging, elif				and a second s				,	,			, mgn		
Sommater Opy-wide Infrastructure Sus/approx/app		1		Sustainable Urban Drainage Systems (SuDS) Implementation				Medium	Medium	High	High	High	High	LOW
	Stormwater	City-wide	Infrastructure			Medium-term				ľ	ľ	ľ	Ĭ	
	Water Supply		Infrastructure	Source Monitoring	Monitoring of stream flows to verify baseflows, seasonal variation and climate change trends	Short-term		Very Low	Low	High	High	High	Medium	VERY HIGH

Appendix A

Climate Change Assessment Risk Matrix

Summary of the risk matrix analysis:

				Overall Rating	Total Score (Avg)				Climate	Change Indi	cators			
Service	Opportunity	Climate Change Resilience Assessment	Additional Detail	H/M/L	1 to 3	Precip: Seasonality	Precip: Increase	Precip: Decrease	Temp: Seasonality	Temp: Increase	Temp: Decrease	Rainfall runoff: Seasonality	Rainfall Runoff: Increase	Rainfall Runoff : Decrease
	Network Re- configuration	N	Reduction of intermittent supply		0									
	Demand Reduction Water Loss Reduction	Y	Efficient design, water reuse, education Leakage repair	Medium	2	3	1	3	2	3	1	1	1	3
	Water Supply Expansion	Y	Expansion of centralised network to all households	Low	1	1	1	2	2	1	2	1	1	1
Water	New Abstraction Exploitation	Y	Features both surface water and groundwater abstractions	High	3	3	3	3	2	3	2	3	3	3
Supply	Upsize Storage Tanks	Y		Low	1	1	2	1	1	1	1	2	2	1
	Rationalise WTPs	Y	Addressing WTPs at capacity	Low	1	3	3	1						
	Source Monitoring	Y	Yield and quality outputs	Low	1	2	2	3						
	Scaled Metering	N	support leakage detection and system operations		0									
	Public Awareness Campaign	Y	Water efficiency and behaviour influence	High	3	3	3	3	3	3	3	3	3	3


				Overall Rating	Total Score (Avg)	Climate Change Indicators									
Service	Opportunity	Climate Change Resilience Assessment	Additional Detail	H/M/L	1 to 3	Precip: Seasonality	Precip: Increase	Precip: Decrease	Temp: Seasonality	Temp: Increase	Temp: Decrease	Rainfall runoff: Seasonality	Rainfall Runoff: Increase	Rainfall Runoff : Decrease	
	Expand Sewer Network	N	Reduction of septic tanks		0										
	Safe Disposal of Septic Tank Waste	Y		Medium	2	1	3	1	3	2	3	2	3	1	
	Monitoring of Blockages	Y		Medium	2	3	3	1	1	1	1	3	3	1	
	Implement Greywater Reuse	Y	Water reuse in new developments	Low	1	3	1	3	1	1	2	1			
	Rationalise WWTPs	N	Diagnostic of efficiency improvement in the WWTP		0										
Wastewater	New / Upgrades WWTP	Y	Ensuring cost efficiency and system efficiency and delivery	Medium	2	3	3	1	1	3	1	2	3	1	
	Solid Effluent Disposal and Management	Y		Medium	2	3	2	1	3	3	3		3		
	Sanitation Public Awareness Campaign	Y		Medium	2	2	2	2	3	3	1	3	2	1	
	Flow Monitoring of Stormwater Inflows	Y		Medium	2	3	3	3	1	1	1	3	3	3	
	mnows	I		wicdfull	2	3	3	3	1	1	1	3	3	5	

				Overall Rating	Total Score (Avg)				Climate	Change Ind	icators			
Service	Opportunity	Climate Change Resilience Assessment	Additional Detail	H/M/L	1 to 3	Precip: Seasonality	Precip: Increase	Precip: Decrease	Temp: Seasonality	Temp: Increase	Temp: Decrease	Rainfall runoff: Seasonality	Rainfall Runoff: Increase	Rainfall Runoff : Decrease
	Coordinated Inclusion of		Coordination with Green infrastructure and open											
	SuDS and NBS	Y	space teams	Medium	2	3	2	2	1	1	1	3	2	1
	Daylighting Existing Culverted		For urban											
	Streams	Y	areas	Low	1	1	1	1	2	2	1	2	1	1
	Stormwater		For irrigation, biodiversity and amenity											
	Reuse	Y	benefit	Medium	2	2	2	2	1	2	1	2	2	2
Stormwater	Reconnect Greywater to Wastewater	v		Ŧ		1	1	1	2	2	1		1	
Stormwater	Network	Y	Avoiding	Low	1	1	1	1	3	3		1	1	1
	First Flush Capture and Treatment	Y	avoiding increased contamination of water sources	Low	1	1	1	2	1	1	1	1	1	3
	Community Awareness of Stormwater		sources		1		1	2	1	1	1		1	5
	Management	Y		Medium	2	3	3	1	1	1	1	3	3	1
	Diverted Utilities	N	Away from stream corridors		0									
	Monitoring Water Quality Improvements	N	Through SCADA		0									

Figure 4-3: Identified Network Pressure Deficiencies, Velocity Deficiencies and Proposed Pumps and Valves

an and the

S.P.A.L

Gasabarma Tank

Kawang Kawang Dz Dz Tank1 Tank 2 Ka

Kawang Dz Tank 3

Hangkawog Tank 2

Hangkawog Tank 1

Kawang Dz Tank 4

and a second

Figure 4-2: DMAs with Reallocated WTP Supply Source

Name: Changzamtog Existing Source: Boreholes Proposed Source: Boreholes and Motihang WTP

Motithang WTP

Changbangdu - Boreholes

Name: Bangdu Residents Existing Source: Chamgang Old WTP Proposed Source: Motihang WTP Name: Bangdu area (left) Existing Source: Chamgang Old WTP Proposed Source: Motihang WTP

> Name: Babesa left Existing Source: Chamgang Old WTP and Ngabirongchu WTP Proposed Source: Chamgang New WTP

Name: Babesa right Existing Source: Chamgang Old WTP and Ngabirongchu WTP Proposed Source: Chamgang New WTP Name: Above Old Highway Existing Source: Chamgang Old WTP and Ngabirongchu WTP Proposed Source: Chamgang New WTP

Set 1

Ngabirongchu WTP

and and a second

2 km

0

 Legend

 Water Treatment Plants (WTP)

 DMA Name

 Above Old Highway

 Babesa left

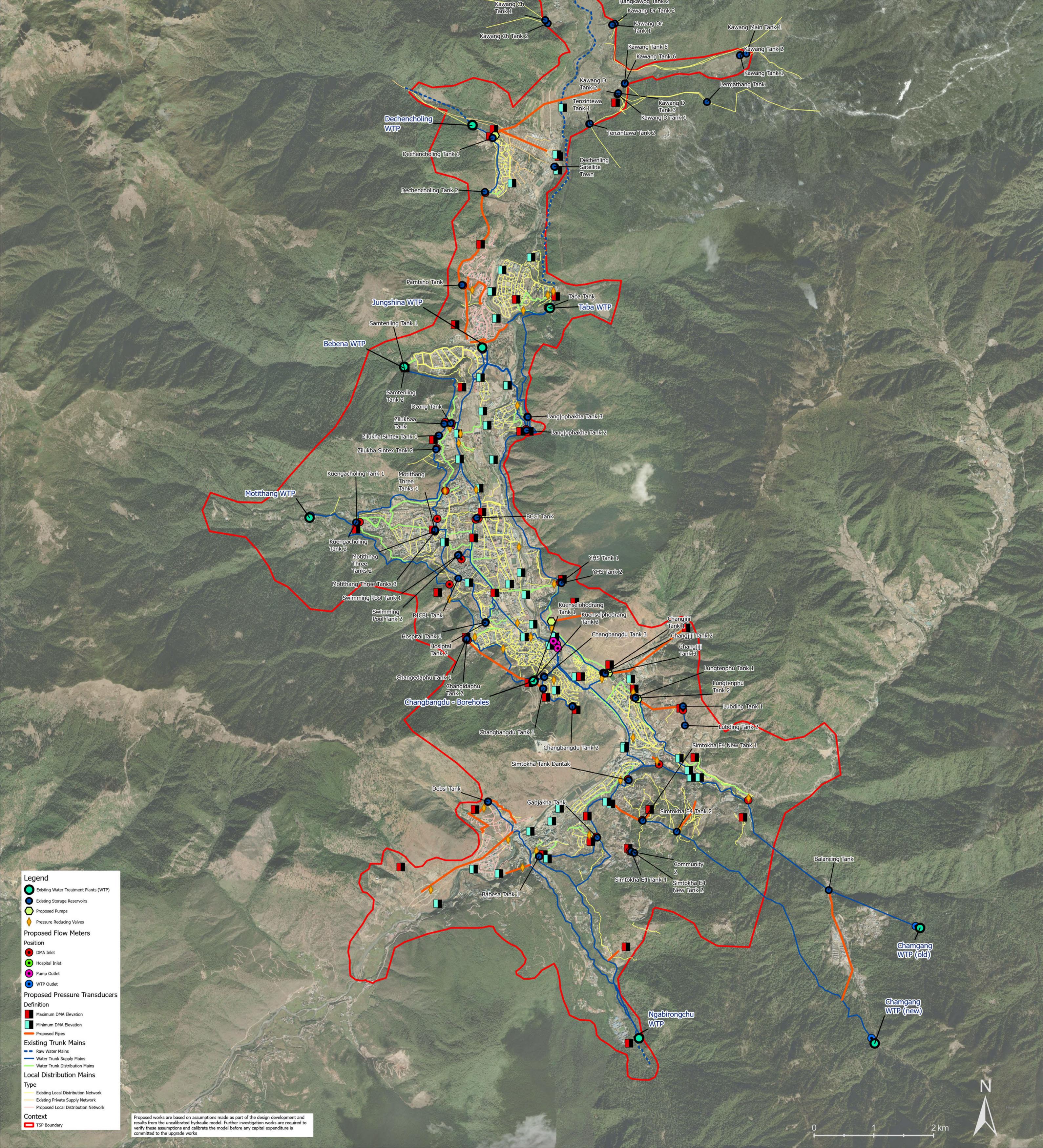
 Babesa right

 Bangdu Residents

 Bangdu area (left)

 Changzamtog

 Pamtsho 1


 Context

 TSP Boundary

ANI MAN

Figure 4-4: Upgrades to the Existing Network

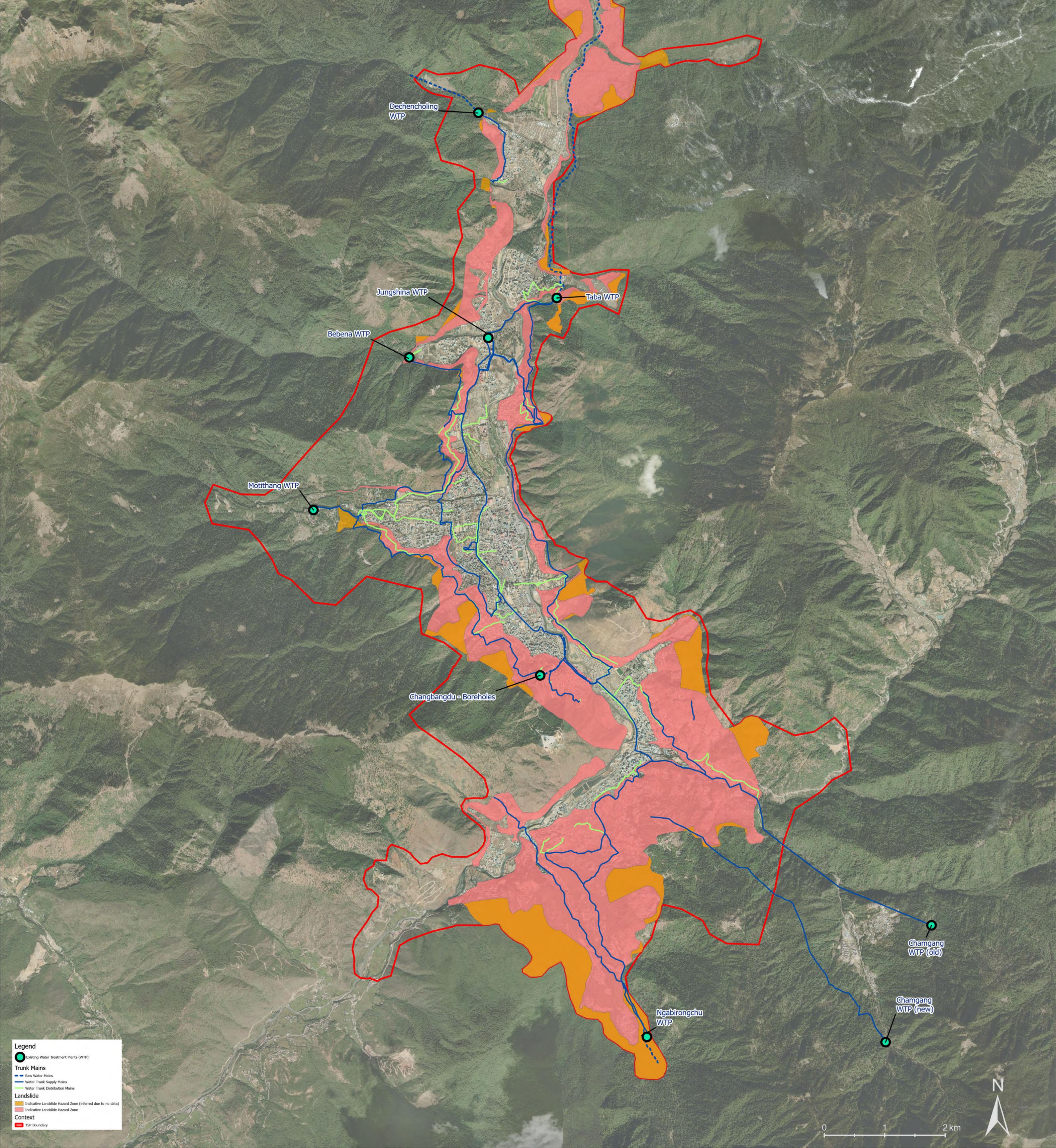
er se se l'in

Silfers 1

Gasabarma Tank

Kawang Kawang Dz Dz Tank1 Tank 2 K

Kawang Dz Tank 3

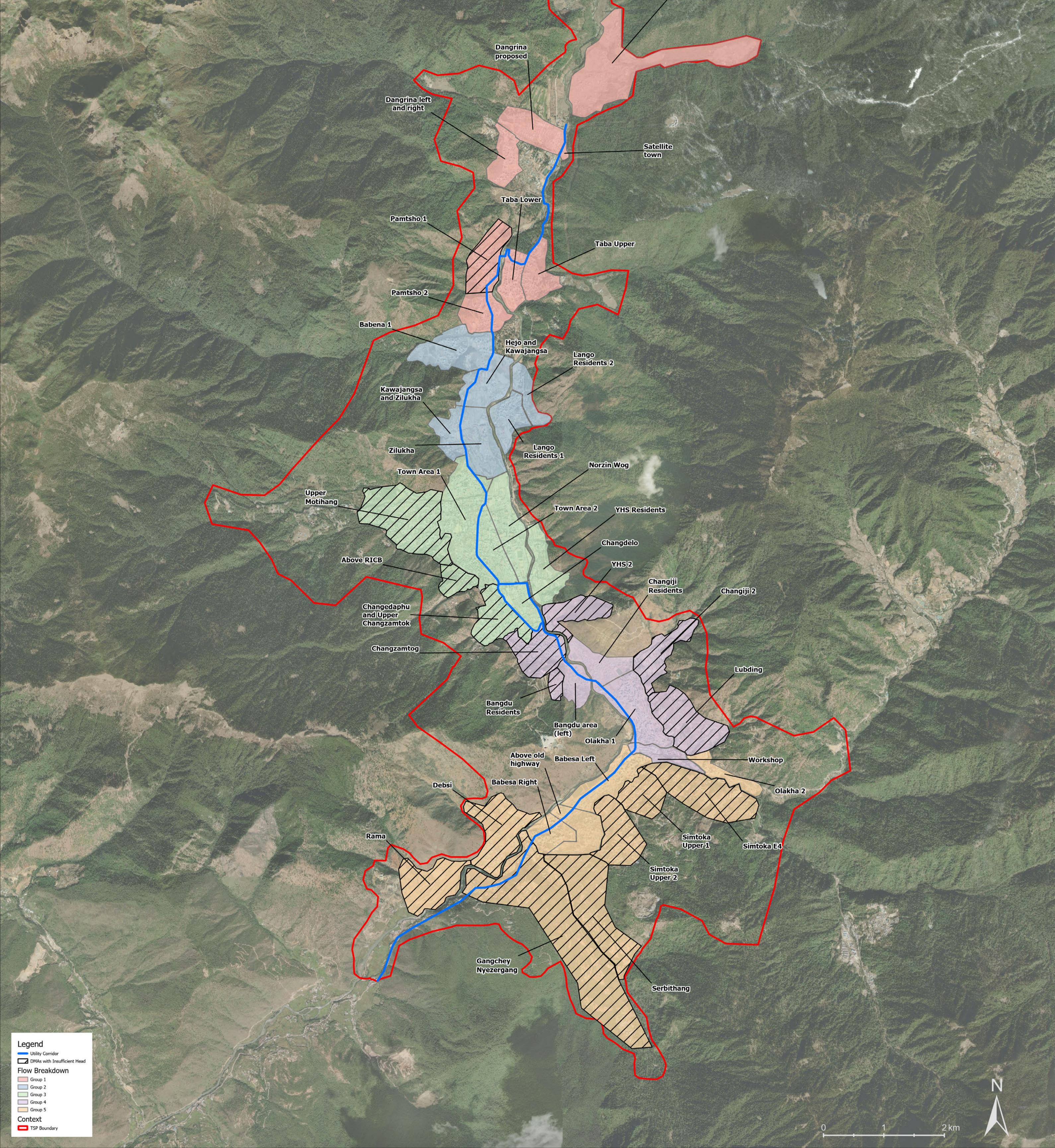

Hangkawog Tank 2

Hangkawog Tank 1

Kawang Dz Tank 4

Figure 4-7: Water Mains Relative to Landslide Hazard Zones

121

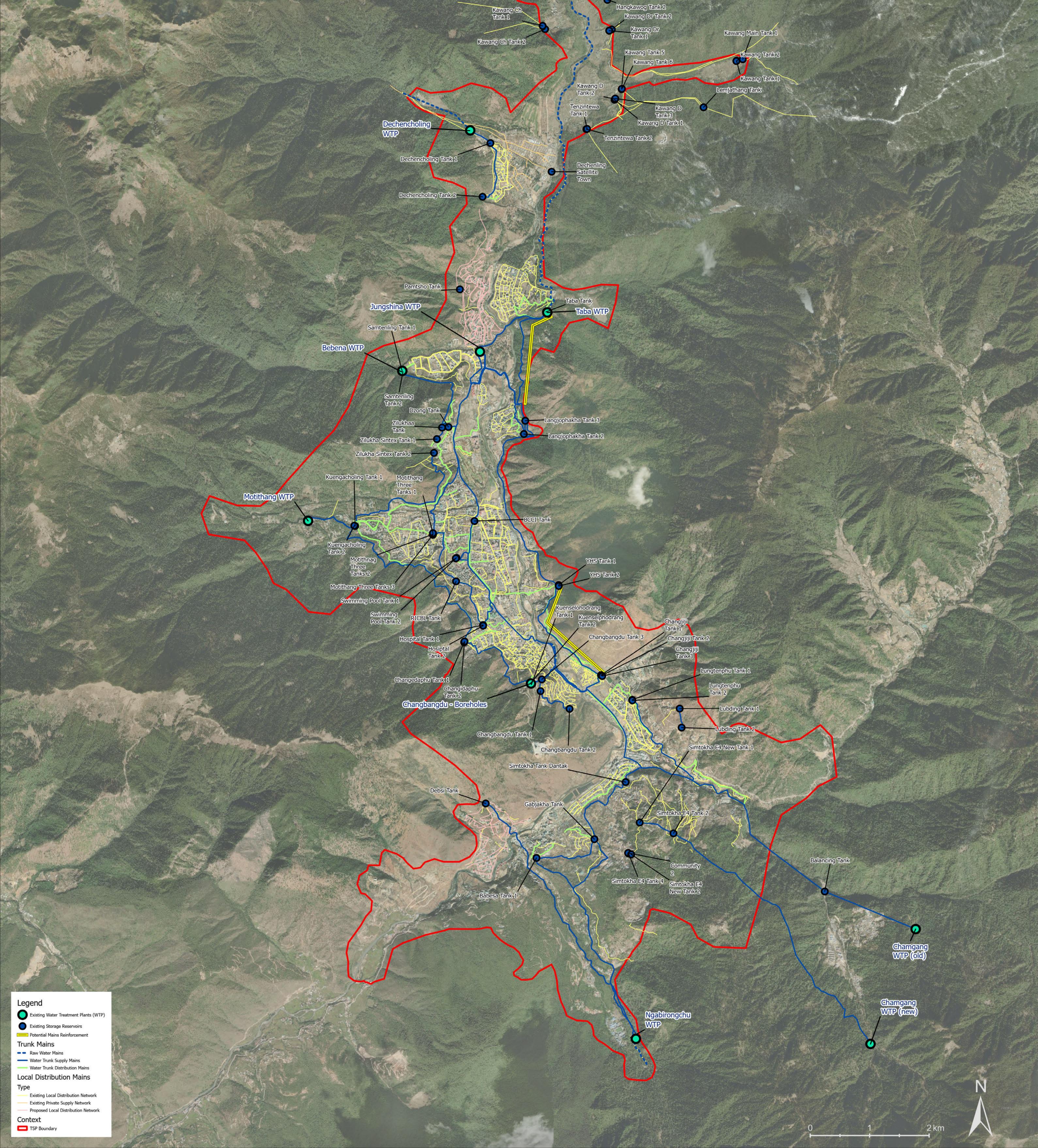


Ser. 1

-

Figure 4-10: Utility Corridor with Flow Breakdown and DMAs with Insufficient Head from Begana-Rama Trunk Main

- North



STP A

Community Supply A

Figure 4-9: Potential Mains Reinforcement for Rezoning Chamgang Old WTP Demand to Taba WTP

- State

CIPA V

Gasabarma Tank

Kawang Kawang Dz Dz Tank1 Tank 2 K

Kawang Dz Tank 3

Hangkawog Tank 1

Kawang Dz Tank 4

A.M.

Appendix C

Data Sheets – DMAs and Storage Reservoirs

Demand Management Area – Above old highway

Value	Result
DMA Name	Above old highway
Storage Reservoir Name	Gabjakha Tank
Storage Reservoir Volume (m ³)	360
Total Storage Reservoir Volume per DMA (m ³)	360.0
Top Water Level (m)	2399.5
Supplying WTP	Chamgang old WTP and Ngabirongchu WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	276
Current Population	3443
2032 Population	2968
2047 Population	3937
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2260
Property Level - Highest Elevation (m)	2390
Property Level – Bell Curve by Elevation	Above old highway - DMA

Value	Result
Property Level – Bell Curve by Pressure	Above old highway - DMA 93
	69 62 62 62 62 62 62 62 62 62 62 62 62 62
Current Water Demand (MLD)	0.845
2032 Water Demand (MLD)	0.555
2047 Water Demand (MLD)	0.429
Required Storage Capacity for 24hours (m ³)	845
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	485

Demand Management Area – Above RICB

Value	Result
DMA Name	Above RICB
Storage Reservoir Name	Kuengacholing Tank 1, Kuengacholing Tank 2
Storage Reservoir Volume (m ³)	320, 320
Total Storage Reservoir Volume per DMA (m ³)	640.0
Top Water Level (m)	2592.5, 2593.5
Supplying WTP	Motihang WTP
Common Supply Pipe Diameter (mm)	100
Number of Properties	124
Current Population	845
2032 Population	1504
2047 Population	2339
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Low
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2390
Property Level - Highest Elevation (m)	2540
Property Level – Bell Curve by Elevation	Above RICB - DMA

Value	Result
Property Level – Bell Curve by Pressure	Above RICB - DMA
	No of Properties
	20 0 0 0 0 0 10 Negative 0-10 10-30 30-40 40-60 60-100 100-200 >200 Static Head Banded (m)
Current Water Demand (MLD)	0.207
2032 Water Demand (MLD)	0.281
2047 Water Demand (MLD)	0.255
Required Storage Capacity for 24hours (m ³)	207
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	-433

Demand Management Area – Changiji 2

Value	Result
DMA Name	Changiji 2
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	0.0
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Taba WTP
Common Supply Pipe Diameter (mm)	nan
Number of Properties	367
Current Population	4748
2032 Population	3165
2047 Population	3539
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Medium
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2360
Property Level - Highest Elevation (m)	2590
Property Level – Bell Curve by Elevation	Changiji 2 - DMA 140 140 140 140 140 140 140 140

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.945
2032 Water Demand (MLD)	0.591
2047 Water Demand (MLD)	0.454
Required Storage Capacity for 24hours (m ³)	945
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	945

Demand Management Area – *Changzamtog*

Value	Result					
DMA Name	Changzamtog					
Storage Reservoir Name	Kuenselohodrang Tank 1, Kuenselphodreang Tank 2					
Storage Reservoir Volume (m ³)	230, 100					
Total Storage Reservoir Volume per DMA (m ³)	330.0					
Top Water Level (m)	2490.5, 2488.5					
Supplying WTP	Changbangdu WTP (boreholes)					
Common Supply Pipe Diameter (mm)	100					
Number of Properties	457					
Current Population	7749					
2032 Population	7508					
2047 Population	9456					
Current Zone Descriptor of Use	High					
2047 Zone Descriptor of Use	High					
Supply Times	Unknown					
Property Level - Lowest Elevation (m)	2290					
Property Level - Highest Elevation (m)	2490					
Property Level – Bell Curve by Elevation	Changzamtog - DMA					

Value	Result
Property Level – Bell Curve by Pressure	Changzamtog - DMA 400 396 300 300 200 300 20
Current Water Demand (MLD)	1.883
2032 Water Demand (MLD)	1.403
2047 Water Demand (MLD)	1.213
Required Storage Capacity for 24hours (m ³)	1883
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	1553

Demand Management Area – Community Supply

Value	Result
DMA Name	Community Supply
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community Supply. Proposed Taba WTP
Common Supply Pipe Diameter (mm)	nan
Number of Properties	437
Current Population	2321
2032 Population	2294
2047 Population	2388
Current Zone Descriptor of Use	nan
2047 Zone Descriptor of Use	nan
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2410
Property Level - Highest Elevation (m)	2570
Property Level – Bell Curve by Elevation	Community Supply - DMA 300 300 300 300 300 300 300 30

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.566
2032 Water Demand (MLD)	0.429
2047 Water Demand (MLD)	0.306
Required Storage Capacity for 24hours (m ³)	566
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	566

Demand Management Area – Dangrina left and right

Value	Result
DMA Name	Dangrina left and right
Storage Reservoir Name	Dechencholing Tank 1, Dechencholing Tank 2
Storage Reservoir Volume (m ³)	230, 230
Total Storage Reservoir Volume per DMA (m ³)	460.0
Top Water Level (m)	2522.5, 2484.5
Supplying WTP	Dechencholing WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	205
Current Population	3967
2032 Population	4434
2047 Population	5921
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Medium
Supply Times	24hour
Property Level - Lowest Elevation (m)	2430
Property Level - Highest Elevation (m)	2520
Property Level – Bell Curve by Elevation	Dangrina left and right - DMA

Value	Result
Property Level – Bell Curve by Pressure	Dangrina left and right + DMA
Current Water Demand (MLD)	0.684
2032 Water Demand (MLD)	0.828
2047 Water Demand (MLD)	0.759
Required Storage Capacity for 24hours (m ³)	684
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	224

Demand Management Area – Dangrina proposed

Value	Result
DMA Name	Dangrina proposed
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Dechencholing WTP
Common Supply Pipe Diameter (mm)	nan
Number of Properties	305
Current Population	3698
2032 Population	4301
2047 Population	6432
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Medium
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2400
Property Level - Highest Elevation (m)	2520
Property Level – Bell Curve by Elevation	Dangrina proposed - DMA 250 90 100 100 100 100 100 100 100

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.908
2032 Water Demand (MLD)	0.804
2047 Water Demand (MLD)	0.825
Required Storage Capacity for 24hours (m ³)	908
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	908

Demand Management Area – Debsi

Value	Result
DMA Name	Debsi
Storage Reservoir Name	Debsi Tank
Storage Reservoir Volume (m ³)	0
Total Storage Reservoir Volume per DMA (m ³)	0.0
Top Water Level (m)	0
Supplying WTP	Ngabirongchu WTP
Common Supply Pipe Diameter (mm)	250
Number of Properties	264
Current Population	1541
2032 Population	1335
2047 Population	4764
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Medium
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2250
Property Level - Highest Elevation (m)	2480
Property Level – Bell Curve by Elevation	Debsi - DMA

Value	Result
Property Level – Bell Curve by Pressure	Debsi - DMA 265
	200
	50 50 50 50 50 50 50 50 50 50 50 50 50 5
	0 0 0 0 0 0 0 0 Negative 0-10 10-30 30-40 40-60 60-100 100-200 >200 Static Head Banded (m)
Current Water Demand (MLD)	0.378
2032 Water Demand (MLD)	0.249
2047 Water Demand (MLD)	0.611
Required Storage Capacity for 24hours (m ³)	378
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	378

Demand Management Area – Gangchey Nyezergang

Value	Result
DMA Name	Gangchey Nyezergang
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Ngabirongchu WTP
Common Supply Pipe Diameter (mm)	250
Number of Properties	514
Current Population	2005
2032 Population	2197
2047 Population	2738
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2250
Property Level - Highest Elevation (m)	2640
Property Level – Bell Curve by Elevation	Gangchey Nyezergang - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.491
2032 Water Demand (MLD)	0.411
2047 Water Demand (MLD)	0.351
Required Storage Capacity for 24hours (m ³)	491
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	491

Demand Management Area - Hejo and Kawajangsa

Value	Result
DMA Name	Hejo and Kawajangsa
Storage Reservoir Name	Dzong Tank, Zilukha Tank
Storage Reservoir Volume (m ³)	250
Total Storage Reservoir Volume per DMA (m ³)	480.0
Top Water Level (m)	2402.5
Supplying WTP	Jungshina WTP. Taba WTP. Babena WTP.
Common Supply Pipe Diameter (mm)	150; 110
Number of Properties	240
Current Population	1852
2032 Population	2517
2047 Population	3258
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Medium
Supply Times	8am-11am and 3pm-6pm
Property Level - Lowest Elevation (m)	2320
Property Level - Highest Elevation (m)	2420
Property Level – Bell Curve by Elevation	Hejo and Kawajangsa - DMA

Value	Result
Property Level – Bell Curve by Pressure	Hejo and Kawajangsa - DMA 210
	200 175 150 125 100 75 50 25 0 0 0 10 10 30 30 40 40 60 100 100 200 >200 Static Head Banded (m)
Current Water Demand (MLD)	0.455
2032 Water Demand (MLD)	0.47
2047 Water Demand (MLD)	0.418
Required Storage Capacity for 24hours (m ³)	455
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	-25

Demand Management Area - Kawajangsa and Zilukha

Value	Result
DMA Name	Kawajangsa and Zilukha
Storage Reservoir Name	Dzong Tank, Kuengacholing Tank 1, Kuengacholing Tank 2, Zilukha Sintex Tank 1, Zilukha Sintex Tank 2, Zilukha Tank
Storage Reservoir Volume (m ³)	250, 320, 320, 6, 6, 230
Total Storage Reservoir Volume per DMA (m ³)	1132.0
Top Water Level (m)	2402.5, 2592.5, 2593.5, 2459.5, 2443.5, 2445.5
Supplying WTP	Motihang WTP
Common Supply Pipe Diameter (mm)	150; 80
Number of Properties	183
Current Population	2670
2032 Population	1928
2047 Population	2059
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Low
Supply Times	8am-11am and 3pm-6pm
Property Level - Lowest Elevation (m)	2360
Property Level - Highest Elevation (m)	2450
Property Level – Bell Curve by Elevation	Kawajangsa and Zilukha - DMA

Value	Result
Property Level – Bell Curve by Pressure	Kawajangsa and Zilukha - DMA 129
	100 set of or of the set of the
Current Water Demand (MLD)	0.471
2032 Water Demand (MLD)	0.36
2047 Water Demand (MLD)	0.264
Required Storage Capacity for 24hours (m ³)	471
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	-661

Demand Management Area – Lango Residents 1

Value	Result
DMA Name	Lango Residents 1
Storage Reservoir Name	Langjophakha Tank 2, Langjophakha tank 3
Storage Reservoir Volume (m ³)	320, 230
Total Storage Reservoir Volume per DMA (m ³)	550.0
Top Water Level (m)	2404.5
Supplying WTP	Taba WTP and Jungshina WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	230
Current Population	2408
2032 Population	1250
2047 Population	1624
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	24hour
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2390
Property Level – Bell Curve by Elevation	Lango Residents 1 - DMA

Value	Result
Property Level – Bell Curve by Pressure	Lango Residents 1 - DMA
Current Water Demand (MLD)	Static Head Banded (m) 0.591
2032 Water Demand (MLD)	0.234
2047 Water Demand (MLD)	0.208
Required Storage Capacity for 24hours (m ³)	591
Deficient Storage Capacity for 24hours $(m^3) - if a negative$ value, then there is excess storage capacity	41

Demand Management Area – Babena 1

Value	Result
DMA Name	Babena 1
Storage Reservoir Name	Samtenling Tank 1, Samtenling Tank 2
Storage Reservoir Volume (m ³)	230, 230
Total Storage Reservoir Volume per DMA (m ³)	460.0
Top Water Level (m)	2467.5, 2467.5
Supplying WTP	Babena WTP
Common Supply Pipe Diameter (mm)	160
Number of Properties	375
Current Population	4098
2032 Population	4963
2047 Population	6584
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	High
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2350
Property Level - Highest Elevation (m)	2460
Property Level – Bell Curve by Elevation	Babena 1 - DMA 250 200 200 200 200 200 200 200 200 200
	0 2200-2300 2300-2400 2400-2500 2500-2600 2600-2700 Elevation Banded (m)

Value	Result
Property Level – Bell Curve by Pressure	Babena 1 - DMA
Current Water Demand (MLD)	1.0
2032 Water Demand (MLD)	0.927
2047 Water Demand (MLD)	0.844
Required Storage Capacity for 24hours (m ³)	1000
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	540

Demand Management Area – Lango Residents 2

Value	Result
DMA Name	Lango Residents 2
Storage Reservoir Name	Langjophakha Tank 2, Langjophakha Tank 3
Storage Reservoir Volume (m ³)	320, 230
Total Storage Reservoir Volume per DMA (m ³)	550.0
Top Water Level (m)	2404.5
Supplying WTP	Taba WTP and Jungshina WTP
Common Supply Pipe Diameter (mm)	150; 100
Number of Properties	61
Current Population	273
2032 Population	1316
2047 Population	1723
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	24hour
Property Level - Lowest Elevation (m)	2320
Property Level - Highest Elevation (m)	2410
Property Level – Bell Curve by Elevation	Lango Residents 2 - DMA

Value	Result
Property Level – Bell Curve by Pressure	Lango Residents 2 - DMA
Current Water Demand (MLD)	0.067
2032 Water Demand (MLD)	0.246
2047 Water Demand (MLD)	0.221
Required Storage Capacity for 24hours (m ³)	67
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	-483

Demand Management Area – *Lubding*

Value	Result
DMA Name	Lubding
Storage Reservoir Name	Lubding Tank 1
Storage Reservoir Volume (m ³)	100
Total Storage Reservoir Volume per DMA (m ³)	100.0
Top Water Level (m)	2646.5
Supplying WTP	Community supply. Proposed Chamgang Old WTP
Common Supply Pipe Diameter (mm)	nan
Number of Properties	161
Current Population	1116
2032 Population	2435
2047 Population	2849
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Very Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2320
Property Level - Highest Elevation (m)	2620
Property Level – Bell Curve by Elevation	Lubding - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.274
2032 Water Demand (MLD)	0.455
2047 Water Demand (MLD)	0.365
Required Storage Capacity for 24hours (m ³)	274
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	174

Demand Management Area – Norzin Wog

Value	Result
DMA Name	Norzin Wog
Storage Reservoir Name	BCCI Tank
Storage Reservoir Volume (m ³)	230
Total Storage Reservoir Volume per DMA (m ³)	230.0
Top Water Level (m)	2361.5
Supplying WTP	Jungshina WTP
Common Supply Pipe Diameter (mm)	250
Number of Properties	395
Current Population	4015
2032 Population	7623
2047 Population	10589
Current Zone Descriptor of Use	High
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2300
Property Level - Highest Elevation (m)	2350
Property Level – Bell Curve by Elevation	Norzin Wog - DMA

Value	Result
Property Level – Bell Curve by Pressure	Norzin Wog - DMA 250 200 150 150 100 200 100 200 100 200 200 20
Current Water Demand (MLD)	0.805
2032 Water Demand (MLD)	1.425
2047 Water Demand (MLD)	1.358
Required Storage Capacity for 24hours (m ³)	805
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	575

Demand Management Area – Olakha 1

Value	Result
DMA Name	Olakha 1
Storage Reservoir Name	Lungtenphu Tank 1, Lungtenphu Tank 2
Storage Reservoir Volume (m ³)	450, 360
Total Storage Reservoir Volume per DMA (m ³)	810.0
Top Water Level (m)	2365.5, 2365.5
Supplying WTP	Chamgang old WTP
Common Supply Pipe Diameter (mm)	200
Number of Properties	580
Current Population	10548
2032 Population	10919
2047 Population	12453
Current Zone Descriptor of Use	High
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2270
Property Level - Highest Elevation (m)	2370
Property Level – Bell Curve by Elevation	Olakha 1 - DMA 300 300 300 300 300 300 300 30

Value	Result
Property Level – Bell Curve by Pressure	Olakha 1 - DMA 350 300 250 200
	2 130 100 50
Current Water Demand (MLD)	2.349
2032 Water Demand (MLD)	2.04
2047 Water Demand (MLD)	1.597
Required Storage Capacity for 24hours (m ³)	2349
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	1539

Demand Management Area – Olakha 2

Value	Result
DMA Name	Olakha 2
Storage Reservoir Name	Balancing Tank
Storage Reservoir Volume (m ³)	0
Total Storage Reservoir Volume per DMA (m ³)	0.0
Top Water Level (m)	2568.5
Supplying WTP	Chamgang old WTP
Common Supply Pipe Diameter (mm)	250
Number of Properties	128
Current Population	965
2032 Population	516
2047 Population	602
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2390
Property Level – Bell Curve by Elevation	Olakha 2 - DMA

Value	Result
Property Level – Bell Curve by Pressure	Olakha 2 - DMA
Current Water Demand (MLD)	0.236
2032 Water Demand (MLD)	0.096
2047 Water Demand (MLD)	0.077
Required Storage Capacity for 24hours (m ³)	236
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	236

Demand Management Area – Pamtsho 1

Value	Result
DMA Name	Pamtsho 1
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Dechencholing WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	190
Current Population	1562
2032 Population	3007
2047 Population	4450
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Medium
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2340
Property Level - Highest Elevation (m)	2560
Property Level – Bell Curve by Elevation	Pamtsho 1 - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.383
2032 Water Demand (MLD)	0.562
2047 Water Demand (MLD)	0.571
Required Storage Capacity for 24hours (m ³)	383
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	383

Demand Management Area – Pamtsho 2

Value	Result
DMA Name	Pamtsho 2
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Dechencholing WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	266
Current Population	3494
2032 Population	2811
2047 Population	3931
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	High
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2330
Property Level - Highest Elevation (m)	2470
Property Level – Bell Curve by Elevation	Pamtsho 2 - DMA 200 90 100 0 0 200-2200-2300 2300-2400 Elevation Banded (m) Pamtsho 2 - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.762
2032 Water Demand (MLD)	0.525
2047 Water Demand (MLD)	0.504
Required Storage Capacity for 24hours (m ³)	762
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	762

Demand Management Area - Rama

Value	Result
DMA Name	Rama
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Ngabirongchu WTP
Common Supply Pipe Diameter (mm)	nan
Number of Properties	0
Current Population	0
2032 Population	0
2047 Population	4349
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Medium
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2250
Property Level - Highest Elevation (m)	2400
Property Level – Bell Curve by Elevation	
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.0
2032 Water Demand (MLD)	0.0
2047 Water Demand (MLD)	0.558

Value	Result
Required Storage Capacity for 24hours (m ³)	0
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	0

Demand Management Area – Satellite town

Value	Result
DMA Name	Satellite town
Storage Reservoir Name	Dechenling Satellite Town
Storage Reservoir Volume (m ³)	50
Total Storage Reservoir Volume per DMA (m ³)	50.0
Top Water Level (m)	2398.5
Supplying WTP	Dechencholing WTP
Common Supply Pipe Diameter (mm)	80
Number of Properties	28
Current Population	218
2032 Population	213
2047 Population	318
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Very Low
Supply Times	24hour
Property Level - Lowest Elevation (m)	2380
Property Level - Highest Elevation (m)	2390
Property Level – Bell Curve by Elevation	Satellite town - DMA

Value	Result
Property Level – Bell Curve by Pressure	Satellite town - DMA
Current Water Demand (MLD)	0.053
2032 Water Demand (MLD)	0.04
2047 Water Demand (MLD)	0.041
Required Storage Capacity for 24hours (m ³)	53
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	3

Demand Management Area – Serbithang

Value	Result
DMA Name	Serbithang
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Ngabirongchu WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	289
Current Population	835
2032 Population	692
2047 Population	789
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Very Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2350
Property Level - Highest Elevation (m)	2630
Property Level – Bell Curve by Elevation	Serbithang - DMA 120 120 120 120 120 120 120 120

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.205
2032 Water Demand (MLD)	0.129
2047 Water Demand (MLD)	0.101
Required Storage Capacity for 24hours (m ³)	205
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	205

Demand Management Area – Babesa Left

Value	Result
DMA Name	Babesa Left
Storage Reservoir Name	Simtokha Tank Dantak
Storage Reservoir Volume (m ³)	735
Total Storage Reservoir Volume per DMA (m ³)	735.0
Top Water Level (m)	2308.5
Supplying WTP	Chamgang old WTP
Common Supply Pipe Diameter (mm)	200
Number of Properties	440
Current Population	5726
2032 Population	5946
2047 Population	7553
Current Zone Descriptor of Use	High
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2260
Property Level - Highest Elevation (m)	2310
Property Level – Bell Curve by Elevation	Babesa Left - DMA

Value	Result
Property Level – Bell Curve by Pressure	Babesa Left - DMA
Current Water Demand (MLD)	50 48 0 Negative 0:10 10:30 30:40 40:60 60:100 100:200 >200 Static Head Banded (m) 10:30 30:40 40:60 100:200 >200 1.399
2032 Water Demand (MLD)	1.111
2047 Water Demand (MLD)	0.969
Required Storage Capacity for 24hours (m ³)	1399
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	664

Demand Management Area – Simtoka E4

Value	Result
DMA Name	Simtoka E4
Storage Reservoir Name	Simtokha E4 New Tank 1
Storage Reservoir Volume (m ³)	200
Total Storage Reservoir Volume per DMA (m ³)	200.0
Top Water Level (m)	2522.5
Supplying WTP	Chamgang New WTP
Common Supply Pipe Diameter (mm)	nan
Number of Properties	196
Current Population	870
2032 Population	1619
2047 Population	1887
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Very Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2500
Property Level – Bell Curve by Elevation	Simtoka E4 - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.214
2032 Water Demand (MLD)	0.303
2047 Water Demand (MLD)	0.242
Required Storage Capacity for 24hours (m ³)	214
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	14

Demand Management Area – Simtoka Upper 1

Value	Result
DMA Name	Simtoka Upper 1
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Chamgang New WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	191
Current Population	968
2032 Population	800
2047 Population	933
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2470
Property Level – Bell Curve by Elevation	Simtoka Upper 1 - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.237
2032 Water Demand (MLD)	0.15
2047 Water Demand (MLD)	0.12
Required Storage Capacity for 24hours (m ³)	237
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	237

Demand Management Area – Simtoka Upper 2

Value	Result
DMA Name	Simtoka Upper 2
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Chamgang New WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	274
Current Population	1814
2032 Population	1383
2047 Population	1559
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Very Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2540
Property Level – Bell Curve by Elevation	Simtoka Upper 2 - DMA

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.363
2032 Water Demand (MLD)	0.258
2047 Water Demand (MLD)	0.2
Required Storage Capacity for 24hours (m ³)	363
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	363

Demand Management Area – Taba Lower

Value	Result
DMA Name	Taba Lower
Storage Reservoir Name	Taba Tank
Storage Reservoir Volume (m ³)	230
Total Storage Reservoir Volume per DMA (m ³)	230.0
Top Water Level (m)	2531.5
Supplying WTP	Taba WTP
Common Supply Pipe Diameter (mm)	200
Number of Properties	219
Current Population	3842
2032 Population	3176
2047 Population	4064
Current Zone Descriptor of Use	Very High
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2360
Property Level - Highest Elevation (m)	2400
Property Level – Bell Curve by Elevation	Taba Lower - DMA

Value	Result
Property Level – Bell Curve by Pressure	Taba Lower - DMA 220
	200 150 100 50
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Current Water Demand (MLD)	0.873
2032 Water Demand (MLD)	0.593
2047 Water Demand (MLD)	0.521
Required Storage Capacity for 24hours (m ³)	873
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	643

Demand Management Area – Taba Upper

Value	Result
DMA Name	Taba Upper
Storage Reservoir Name	Taba Tank
Storage Reservoir Volume (m ³)	230
Total Storage Reservoir Volume per DMA (m ³)	230.0
Top Water Level (m)	2531.5
Supplying WTP	Taba WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	286
Current Population	2995
2032 Population	3655
2047 Population	4684
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2390
Property Level - Highest Elevation (m)	2500
Property Level – Bell Curve by Elevation	Taba Upper - DMA

Value	Result
Property Level – Bell Curve by Pressure	Taba Upper - DMA 216
	130 130 100 30 0 0 1 Negative 0.10 10.30 30.40 40.60 60.100 100.200 >200
Current Water Demand (MLD)	Static Head Banded (m) 0.658
2032 Water Demand (MLD)	0.683
2047 Water Demand (MLD)	0.601
Required Storage Capacity for 24hours (m ³)	658
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	428

Demand Management Area – Town Area 1

Value	Result
DMA Name	Town Area 1
Storage Reservoir Name	Motithang Three Tanks 1, Motithang Three Tanks 3, Motithang Three Tanks 2
Storage Reservoir Volume (m ³)	320, 320, 320
Total Storage Reservoir Volume per DMA (m ³)	960.0
Top Water Level (m)	2440.5, 2439.5, 2440.5
Supplying WTP	Motihang WTP. Taba WTP. Jungshina WTP.
Common Supply Pipe Diameter (mm)	150
Number of Properties	797
Current Population	8555
2032 Population	8342
2047 Population	11230
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2350
Property Level - Highest Elevation (m)	2440
Property Level – Bell Curve by Elevation	Town Area 1 - DMA

Value	Result
Property Level – Bell Curve by Pressure	Town Area 1 - DMA
Current Water Demand (MLD)	1.661
2032 Water Demand (MLD)	1.559
2047 Water Demand (MLD)	1.44
Required Storage Capacity for 24hours (m ³)	1661
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	701

Demand Management Area – Town Area 2

Value	Result
DMA Name	Town Area 2
Storage Reservoir Name	Swimming Pool Tank 1, Swimming Pool Tank 2
Storage Reservoir Volume (m ³)	230, 230
Total Storage Reservoir Volume per DMA (m ³)	460.0
Top Water Level (m)	2375.5, 2375.5
Supplying WTP	Motihang WTP. Taba WTP. Jungshina WTP.
Common Supply Pipe Diameter (mm)	150
Number of Properties	478
Current Population	4411
2032 Population	5766
2047 Population	8130
Current Zone Descriptor of Use	Very High
2047 Zone Descriptor of Use	Very High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2360
Property Level – Bell Curve by Elevation	Town Area 2 - DMA

Value	Result
Property Level – Bell Curve by Pressure	Town Area 2 - DMA
Current Water Demand (MLD)	1.005
2032 Water Demand (MLD)	1.077
2047 Water Demand (MLD)	1.043
Required Storage Capacity for 24hours (m ³)	1005
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	545

Demand Management Area – Upper Motihang

Value	Result
DMA Name	Upper Motihang
Storage Reservoir Name	Kuengacholing Tank 1, Kuengacholing Tank 2
Storage Reservoir Volume (m ³)	320, 320
Total Storage Reservoir Volume per DMA (m ³)	640.0
Top Water Level (m)	2592.5, 2593.5
Supplying WTP	Motihang WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	897
Current Population	10825
2032 Population	9384
2047 Population	10561
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2410
Property Level - Highest Elevation (m)	2590
Property Level – Bell Curve by Elevation	Upper Motihang - DMA 500 400 900 200 200 200 200 200 200 200 200 2

Value	Result
Property Level – Bell Curve by Pressure	Upper Motihang - DMA 447
	400 300 200 100 24 55 0 24 0 101 1030 3040 4060 5010 100 100 232 0 0 0 0 0 0 0 0 0 0 0 0 0
Current Water Demand (MLD)	2.23
2032 Water Demand (MLD)	1.753
2047 Water Demand (MLD)	1.354
Required Storage Capacity for 24hours (m ³)	2230
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	1590

Demand Management Area – Workshop

Value	Result
DMA Name	Workshop
Storage Reservoir Name	Workshop Tank 1, Workshop Tank 2, Workshop Tank 3, Workshop Tank 4
Storage Reservoir Volume (m ³)	2, 2, 2, 2
Total Storage Reservoir Volume per DMA (m ³)	8.0
Top Water Level (m)	2307.5, 2309.5, 2296.5, 2295.5
Supplying WTP	Private supply. Proposed Chamgang Old.
Common Supply Pipe Diameter (mm)	75
Number of Properties	130
Current Population	1492
2032 Population	1501
2047 Population	1750
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	High
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2270
Property Level - Highest Elevation (m)	2300
Property Level – Bell Curve by Elevation	
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.336
2032 Water Demand (MLD)	0.28
2047 Water Demand (MLD)	0.224

Value	Result
Required Storage Capacity for 24hours (m ³)	336
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	328

Demand Management Area – YHS 2

Value	Result
DMA Name	YHS 2
Storage Reservoir Name	None
Storage Reservoir Volume (m ³)	nan
Total Storage Reservoir Volume per DMA (m ³)	nan
Top Water Level (m)	nan
Supplying WTP	Community supply. Proposed Taba WTP
Common Supply Pipe Diameter (mm)	200
Number of Properties	68
Current Population	981
2032 Population	1030
2047 Population	1427
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Very Low
Supply Times	Not currently supplied by system
Property Level - Lowest Elevation (m)	2280
Property Level - Highest Elevation (m)	2520
Property Level – Bell Curve by Elevation	HHS 2 - DMA 40 41 40 40 41 40 40 40 40 40 40 40 40 40 40

Value	Result
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.213
2032 Water Demand (MLD)	0.192
2047 Water Demand (MLD)	0.183
Required Storage Capacity for 24hours (m ³)	213
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	213

Demand Management Area - Babesa Right

Value	Result
DMA Name	Babesa Right
Storage Reservoir Name	Babesa Tank 1
Storage Reservoir Volume (m ³)	360
Total Storage Reservoir Volume per DMA (m ³)	360.0
Top Water Level (m)	2335.5
Supplying WTP	Chamgang old WTP and Ngabirongchu WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	219
Current Population	4612
2032 Population	3455
2047 Population	4243
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2260
Property Level - Highest Elevation (m)	2330
Property Level – Bell Curve by Elevation	Babesa Right - DMA

Value	Result
Property Level – Bell Curve by Pressure	Babesa Right - DMA
Current Water Demand (MLD)	0.904
2032 Water Demand (MLD)	0.646
2047 Water Demand (MLD)	0.544
Required Storage Capacity for 24hours (m ³)	904
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	544

Demand Management Area - YHS Residents

Value	Result
DMA Name	YHS Residents
Storage Reservoir Name	YHS Tank 1, YHS Tank 2
Storage Reservoir Volume (m ³)	320, 230
Total Storage Reservoir Volume per DMA (m ³)	550.0
Top Water Level (m)	2406.5, 2406.5
Supplying WTP	Taba WTP
Common Supply Pipe Diameter (mm)	80
Number of Properties	229
Current Population	3854
2032 Population	3577
2047 Population	4264
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Medium
Supply Times	24hour
Property Level - Lowest Elevation (m)	2290
Property Level - Highest Elevation (m)	2410
Property Level – Bell Curve by Elevation	WIS Residents - DMA

Value	Result
Property Level – Bell Curve by Pressure	YHS Residents - DMA
Current Water Demand (MLD)	0.532
2032 Water Demand (MLD)	0.668
2047 Water Demand (MLD)	0.547
Required Storage Capacity for 24hours (m ³)	532
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	-18

Demand Management Area – Zilukha

Value	Result
DMA Name	Zilukha
Storage Reservoir Name	Dzong Tank
Storage Reservoir Volume (m ³)	250
Total Storage Reservoir Volume per DMA (m ³)	250.0
Top Water Level (m)	2402.5
Supplying WTP	Motihang WTP. Jungshina WTP.
Common Supply Pipe Diameter (mm)	100
Number of Properties	0
Current Population	232
2032 Population	194
2047 Population	202
Current Zone Descriptor of Use	Very Low
2047 Zone Descriptor of Use	Very Low
Supply Times	8am-11am and 3pm-6pm
Property Level - Lowest Elevation (m)	2370
Property Level - Highest Elevation (m)	2480
Property Level – Bell Curve by Elevation	
Property Level – Bell Curve by Pressure	
Current Water Demand (MLD)	0.025
2032 Water Demand (MLD)	0.036
2047 Water Demand (MLD)	0.026

Value	Result
Required Storage Capacity for 24hours (m ³)	25
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	-225

Demand Management Area - Bangdu area (left)

Value	Result
DMA Name	Bangdu area (left)
Storage Reservoir Name	Changbangdu Tank 2, Changbangdu Tank 1
Storage Reservoir Volume (m ³)	270, 270
Total Storage Reservoir Volume per DMA (m ³)	270.0
Top Water Level (m)	2391.5, 2435.5
Supplying WTP	Chamgang old WTP
Common Supply Pipe Diameter (mm)	210
Number of Properties	220
Current Population	2871
2032 Population	1868
2047 Population	2345
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	High
Supply Times	24hour
Property Level - Lowest Elevation (m)	2280
Property Level - Highest Elevation (m)	2410
Property Level – Bell Curve by Elevation	Bangdu area (left) - DMA

Value	Result
Property Level – Bell Curve by Pressure	Bangdu area (left) - DMA
Current Water Demand (MLD)	0.705
2032 Water Demand (MLD)	0.349
2047 Water Demand (MLD)	0.301
Required Storage Capacity for 24hours (m ³)	705
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	435

Demand Management Area - Bangdu Residents

Value	Result
DMA Name	Bangdu Residents
Storage Reservoir Name	Changbangdu Tank 1
Storage Reservoir Volume (m ³)	270
Total Storage Reservoir Volume per DMA (m ³)	270.0
Top Water Level (m)	2435.5
Supplying WTP	Chamgang old WTP
Common Supply Pipe Diameter (mm)	200
Number of Properties	72
Current Population	830
2032 Population	1003
2047 Population	1192
Current Zone Descriptor of Use	Low
2047 Zone Descriptor of Use	Low
Supply Times	24hour
Property Level - Lowest Elevation (m)	2360
Property Level - Highest Elevation (m)	2430
Property Level – Bell Curve by Elevation	Bangdu Residents - DMA

Value	Result
Property Level – Bell Curve by Pressure	Bangdu Residents - DMA
Current Water Demand (MLD)	0.147
2032 Water Demand (MLD)	0.187
2047 Water Demand (MLD)	0.153
Required Storage Capacity for 24hours (m ³)	147
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	-123

Demand Management Area – Changdelo

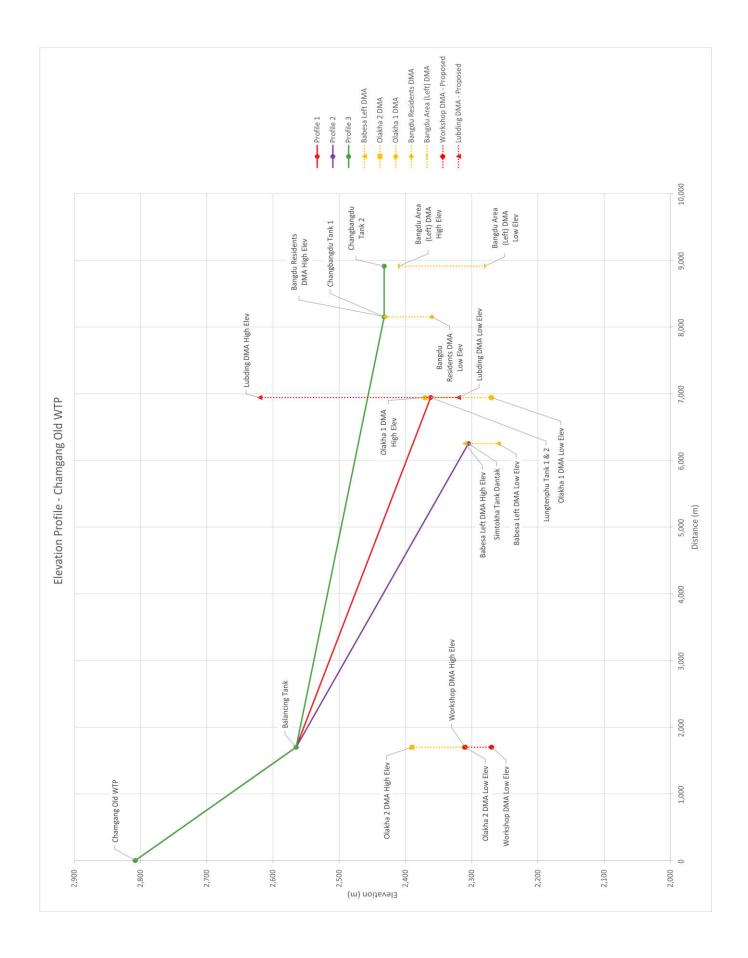
Value	Result
DMA Name	Changdelo
Storage Reservoir Name	YHS Tank 1, YHS Tank 2
Storage Reservoir Volume (m ³)	320, 230
Total Storage Reservoir Volume per DMA (m ³)	550.0
Top Water Level (m)	2406.5, 2406.5
Supplying WTP	Taba WTP
Common Supply Pipe Diameter (mm)	80; 80
Number of Properties	324
Current Population	5003
2032 Population	6148
2047 Population	7517
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Very High
Supply Times	Unknown
Property Level - Lowest Elevation (m)	2290
Property Level - Highest Elevation (m)	2350
Property Level – Bell Curve by Elevation	Changdelo - DMA

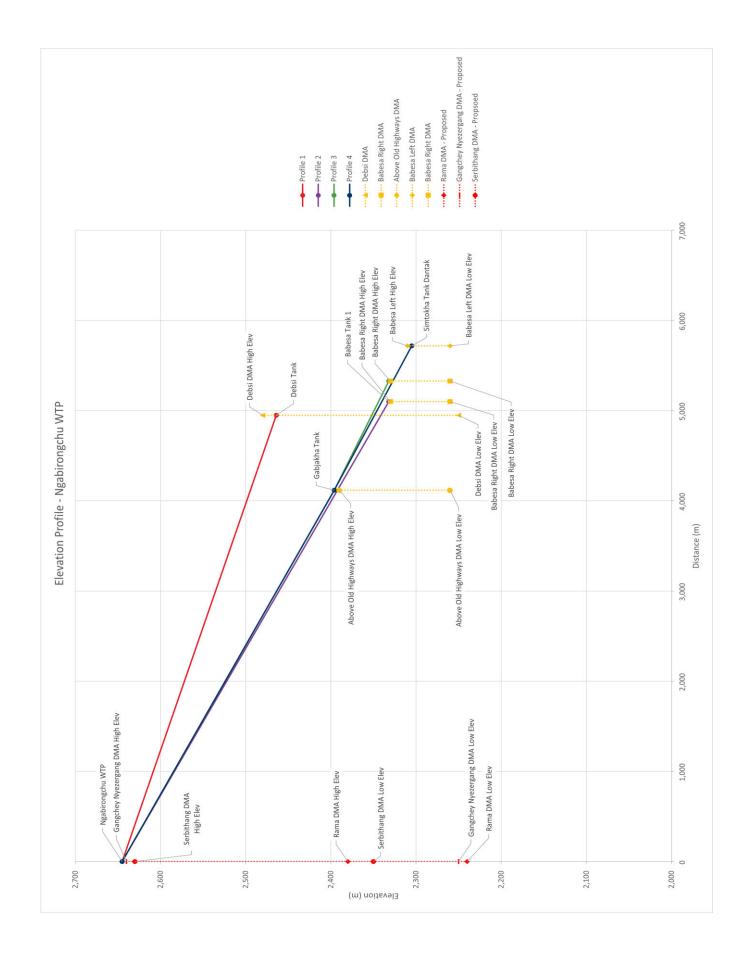
Value	Result
Property Level – Bell Curve by Pressure	Changdelo - DMA 200 175 180 190 190 190 190 190 190 190 19
Current Water Demand (MLD)	1.003
2032 Water Demand (MLD)	1.149
2047 Water Demand (MLD)	0.964
Required Storage Capacity for 24hours (m ³)	1003
Deficient Storage Capacity for 24hours (m^3) – if a negative value, then there is excess storage capacity	453

Demand Management Area – Changedaphu and Upper Changzamtok

Value	Result
DMA Name	Changedaphu and Upper Changzamtok
Storage Reservoir Name	Changedaphu Tank 1, Changedaphu Tank 2
Storage Reservoir Volume (m ³)	230, 100
Total Storage Reservoir Volume per DMA (m ³)	330.0
Top Water Level (m)	2482.5, 2481.5
Supplying WTP	Motihang WTP for all but hospital which is Taba WTP
Common Supply Pipe Diameter (mm)	100; 80
Number of Properties	601
Current Population	9263
2032 Population	10860
2047 Population	13003
Current Zone Descriptor of Use	Very High
2047 Zone Descriptor of Use	High
Supply Times	6am-9am and 6pm-9pm
Property Level - Lowest Elevation (m)	2310
Property Level - Highest Elevation (m)	2480
Property Level – Bell Curve by Elevation	Changedaphu and Upper Changzamtok - DMA 377 360 360 360 360 360 360 360 360

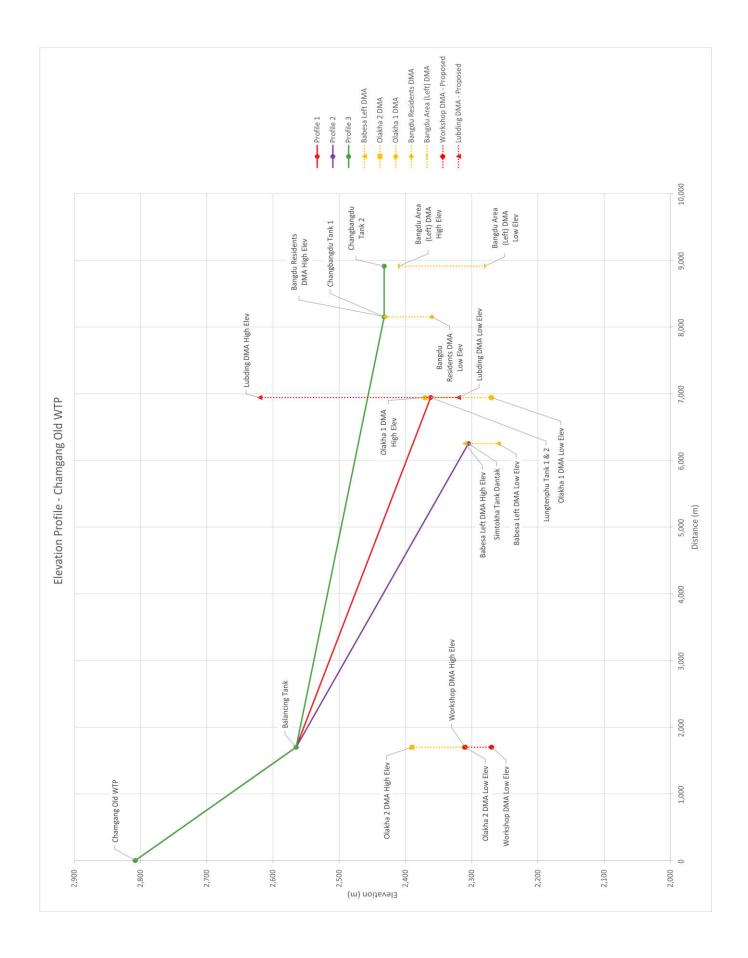
Value	Result
Property Level – Bell Curve by Pressure	Changedaphu and Upper Changzamtok - DMA 275
	250 200 9 100 100 100 100 100 100 100
Current Water Demand (MLD)	2.047
2032 Water Demand (MLD)	2.029
2047 Water Demand (MLD)	1.667
Required Storage Capacity for 24hours (m ³)	2047
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	1717

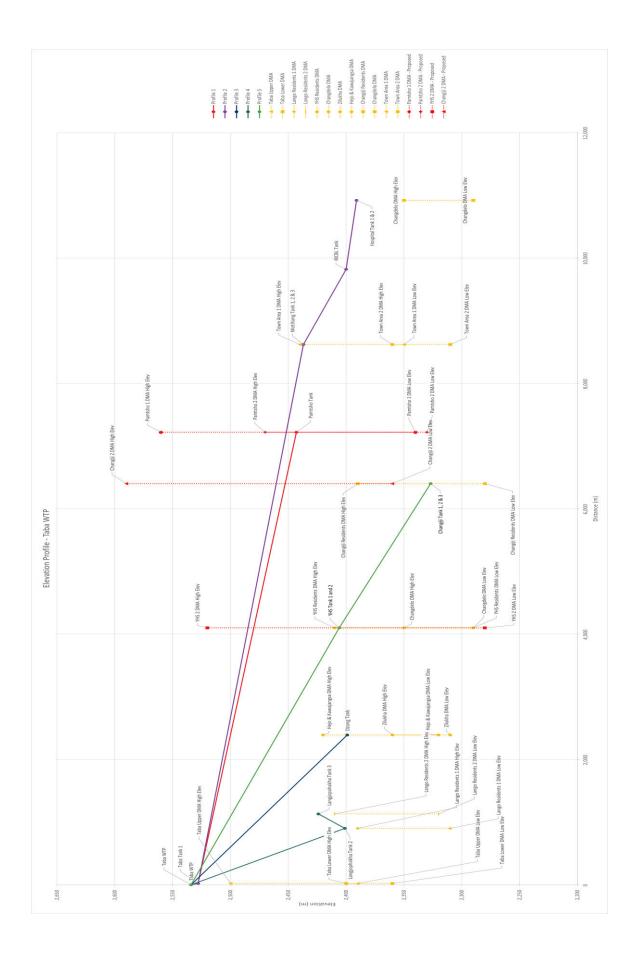

Demand Management Area - Changiji Residents


Value	Result
DMA Name	Changiji Residents
Storage Reservoir Name	Changiji Tank 2, Changiji Tank 1, Changiji Tank 3
Storage Reservoir Volume (m ³)	230, 230, 230
Total Storage Reservoir Volume per DMA (m ³)	690.0
Top Water Level (m)	2330.5, 2330.5, 2330.5
Supplying WTP	Taba WTP
Common Supply Pipe Diameter (mm)	150
Number of Properties	278
Current Population	6755
2032 Population	5892
2047 Population	6938
Current Zone Descriptor of Use	Medium
2047 Zone Descriptor of Use	Medium
Supply Times	24hour
Property Level - Lowest Elevation (m)	2280
Property Level - Highest Elevation (m)	2390
Property Level – Bell Curve by Elevation	Changiji Residents - DMA

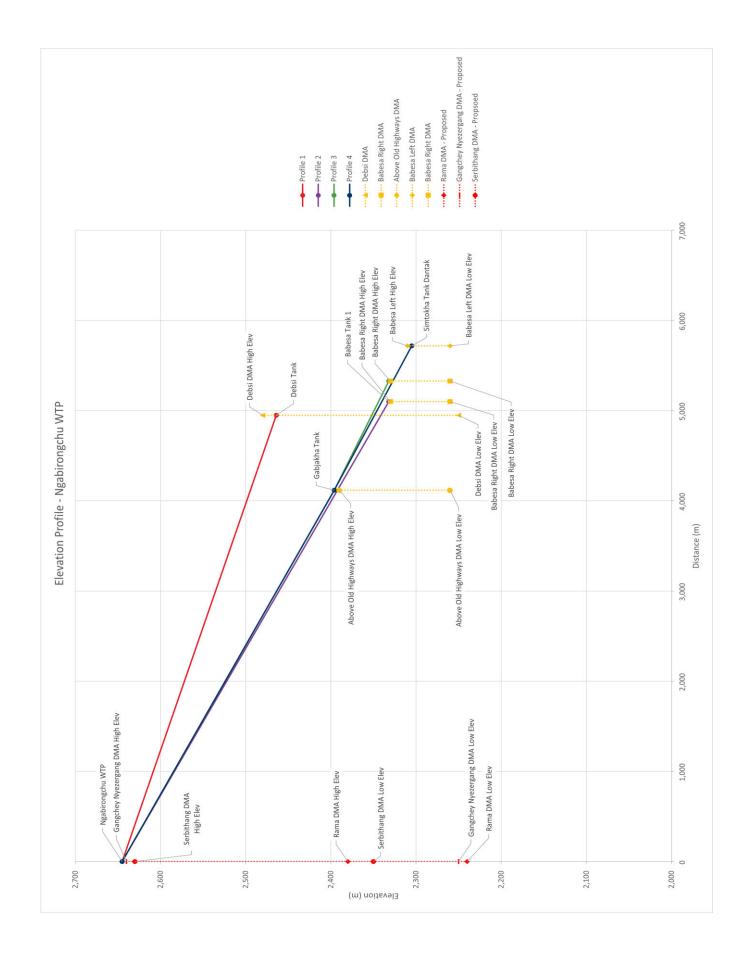
Value	Result
Property Level – Bell Curve by Pressure	Changiji Residents - DMA
Current Water Demand (MLD)	1.439
2032 Water Demand (MLD)	1.101
2047 Water Demand (MLD)	0.89
Required Storage Capacity for 24hours (m ³)	1439
Deficient Storage Capacity for 24hours $(m^3) - if$ a negative value, then there is excess storage capacity	749

Storage Reservoir – Babesa Tank 1

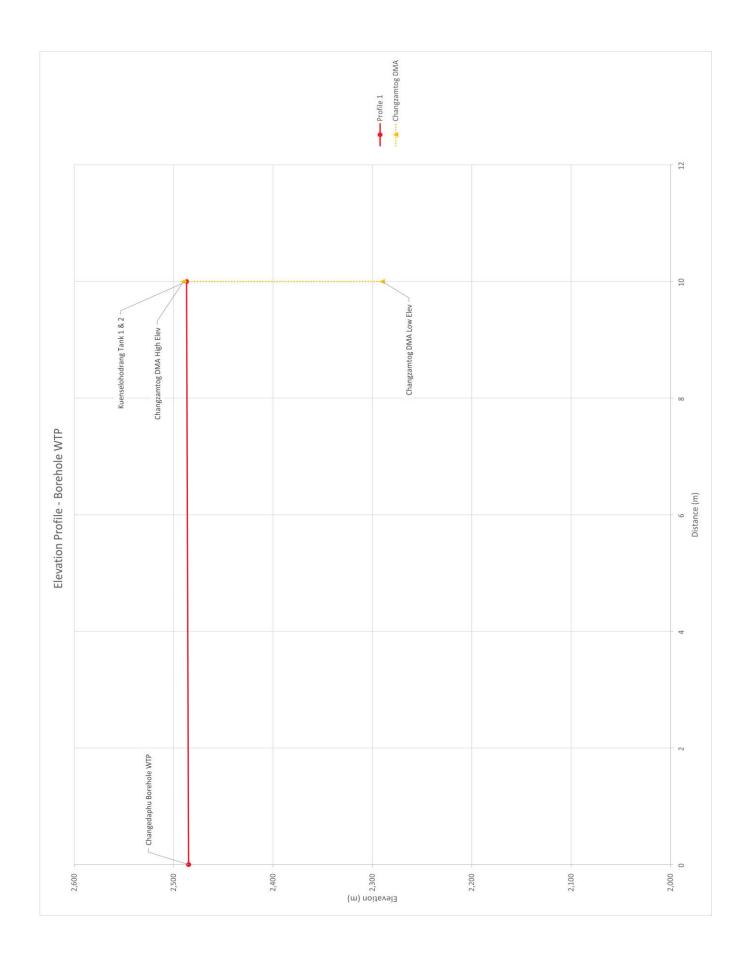

Value	Result
Storage Reservoir Name	Babesa Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Babesa right
WTP Supplying Storage Reservoir	Chamgang Old WTP; Ngabirongchu WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	90
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	150
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2335.5
Bottom Water Elevation (m)	2332
Storage Reservoir Volume (m ³)	360
Storage Reservoir Material	RCC_circular


Storage Reservoir - Balancing Tank

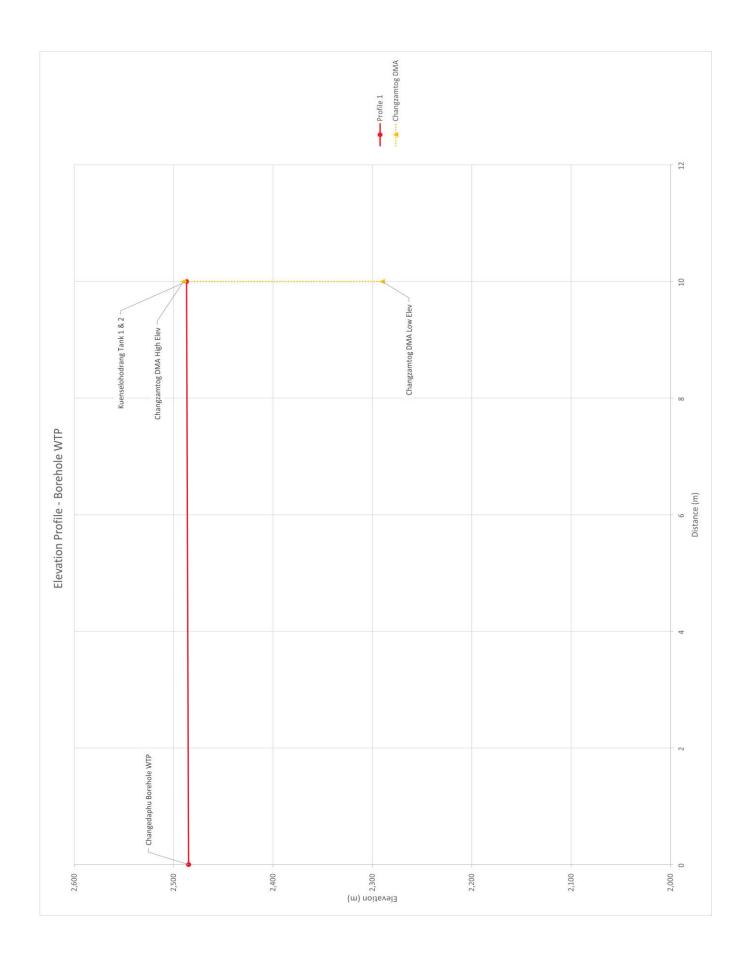
Value	Result
Storage Reservoir Name	Balancing Tank
Downstream Storage Reservoir(s)	Luntenphu Tank 1; Luntenphu Tank 2; Gabjakha tank; Babesa Tank 1; Simtokha Tank- Dantak; Changbangdu Tank 1; Changbangdu Tank 2
Adjacent Reservoir(s)	None
Downstream DMA(s)	Olakha 2; Lungtenphu Tank 1 and 2 which serves Olakha 1; Gabjakha Tank which serves Above Old Highway; Gabjakha tank which serves Simtokha Tank - Danak Tank which serves Babesa Left; Gabjakha Tank which serves Babesa Tank 1 which serves Babesa Right; Changbangdu Tank 1 which serves Bangdu Residents; Changbangdu Tank 1 which serves Changbangdu Tank 2 which serves Bangdu Area (Left)
WTP Supplying Storage Reservoir	Chamgang Old WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	250
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	350
Operations	Not provided
Top Water Elevation (m)	2568.5
Bottom Water Elevation (m)	2565
Storage Reservoir Volume (m ³)	0
Storage Reservoir Material	nan


Storage Reservoir - Changiji Tank 3

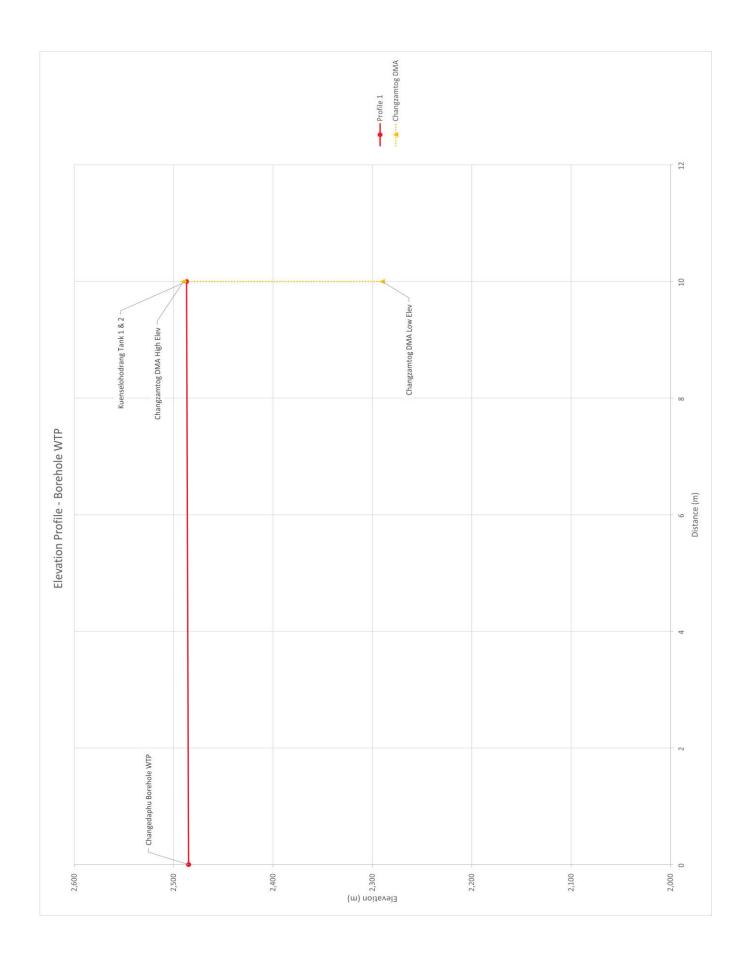
Value	Result
Storage Reservoir Name	Changiji Tank 3
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Changiji Tank 1 and 2
Downstream DMA(s)	Changiji Residents
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	24hour
Top Water Elevation (m)	2330.5
Bottom Water Elevation (m)	2327
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir – Debsi Tank

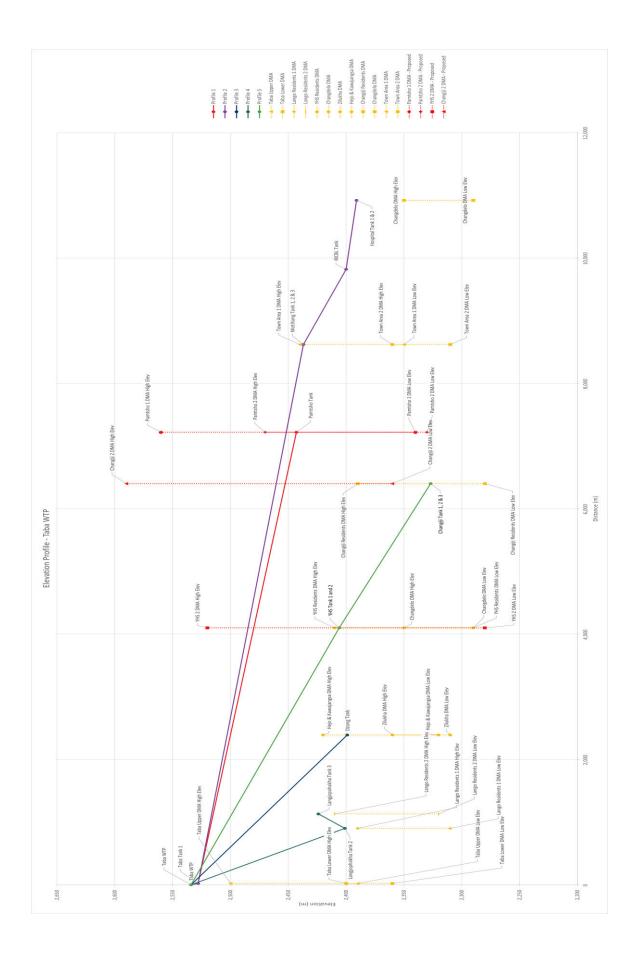
Value	Result
Storage Reservoir Name	Debsi Tank
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Debsi
WTP Supplying Storage Reservoir	Ngabirongchu WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	250
Number of Outlet Pipes	0
Diameter of Outlet Pipes (mm)	nan
Operations	Not provided
Top Water Elevation (m)	0
Bottom Water Elevation (m)	-3.5
Storage Reservoir Volume (m ³)	0
Storage Reservoir Material	nan


Storage Reservoir - Dechencholing Tank 1

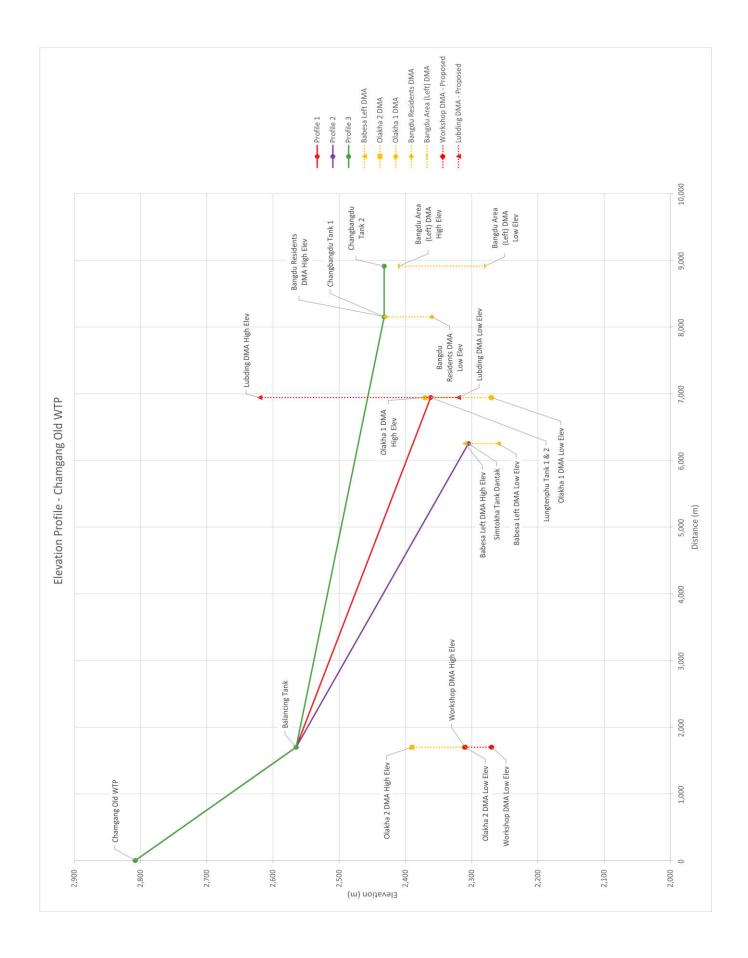
Value	Result
Storage Reservoir Name	Dechencholing Tank 1
Downstream Storage Reservoir(s)	Dechencholing Tank 2; Dechencholing satellite town
Adjacent Reservoir(s)	Dechencholing Tank 2
Downstream DMA(s)	Dangrina Left and Right; Dechencholing Tank 2 which supplies Dangrina Left and Right; Satellite Town Tank which supplies Satellite Town
WTP Supplying Storage Reservoir	Dechencholing WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	3
Diameter of Outlet Pipes (mm)	150; 150; 80
Operations	24hour
Top Water Elevation (m)	2522.5
Bottom Water Elevation (m)	2519
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

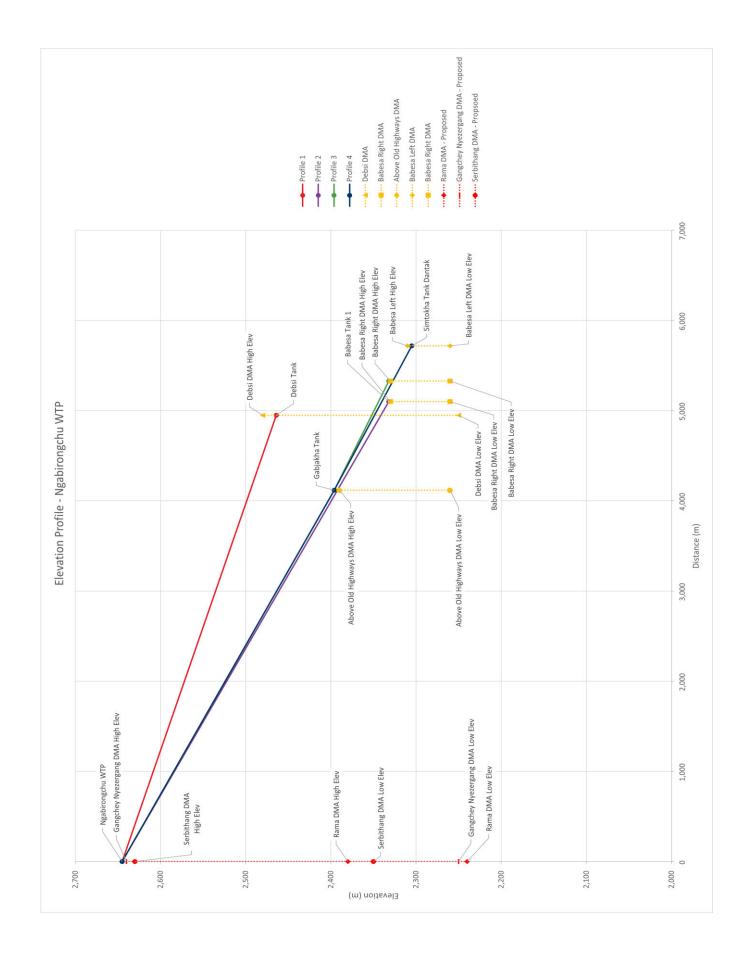

Storage Reservoir - Dechencholing Tank 2

Value	Result
Storage Reservoir Name	Dechencholing Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Dechencholing Tank 1
Downstream DMA(s)	Dangrina Left and Right
WTP Supplying Storage Reservoir	Dechencholing WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	24hour
Top Water Elevation (m)	2484.5
Bottom Water Elevation (m)	2481
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

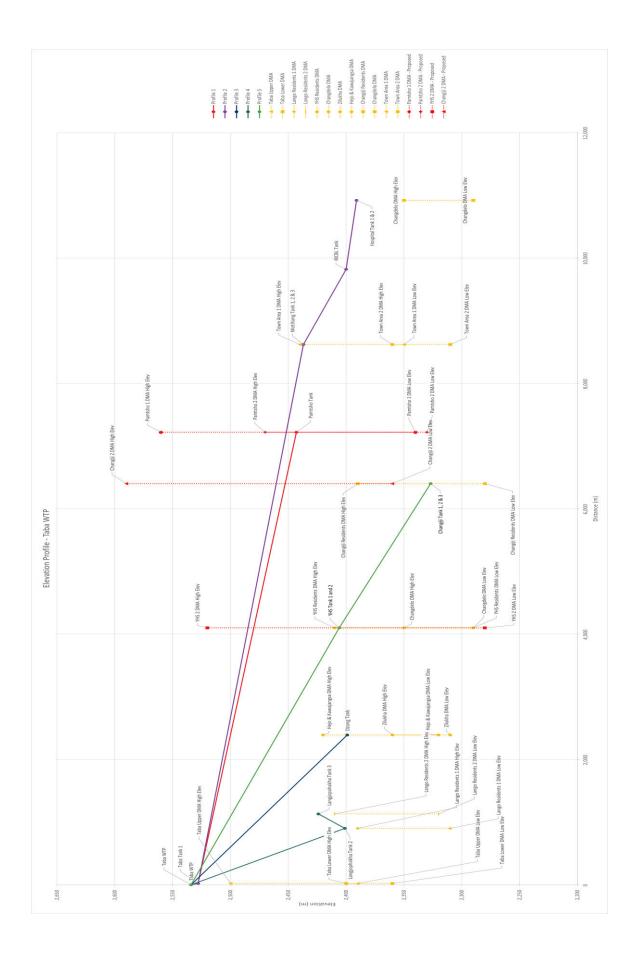

Storage Reservoir - Dechenling Satellite Town

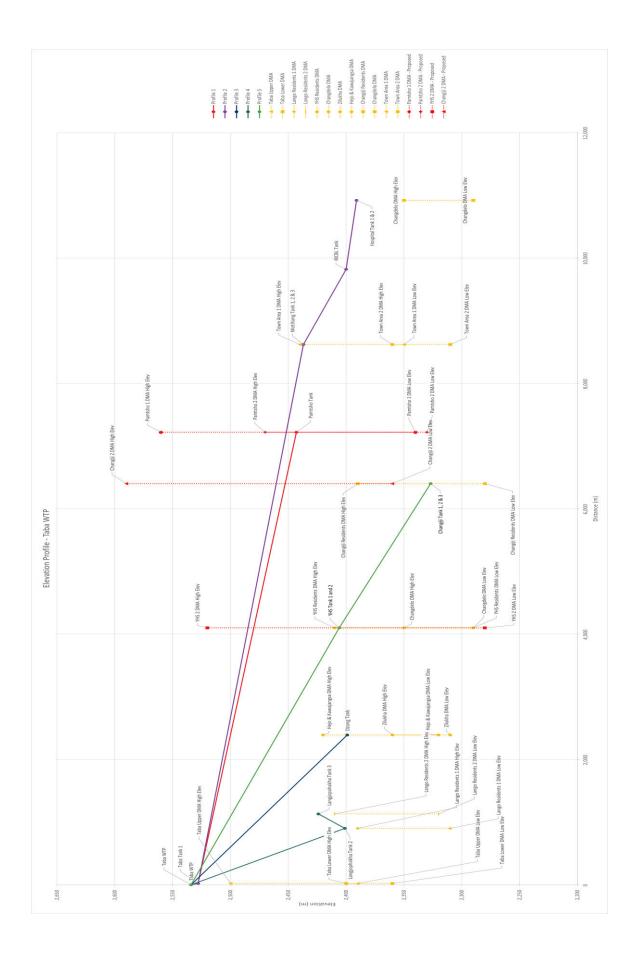
Value	Result
Storage Reservoir Name	Dechenling Satellite Town
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Satellite Town
WTP Supplying Storage Reservoir	Dechencholing WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	80
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	24hour
Top Water Elevation (m)	2398.5
Bottom Water Elevation (m)	2395
Storage Reservoir Volume (m ³)	50
Storage Reservoir Material	Syntax_circular_3x2000litre


Storage Reservoir - Dzong Tank

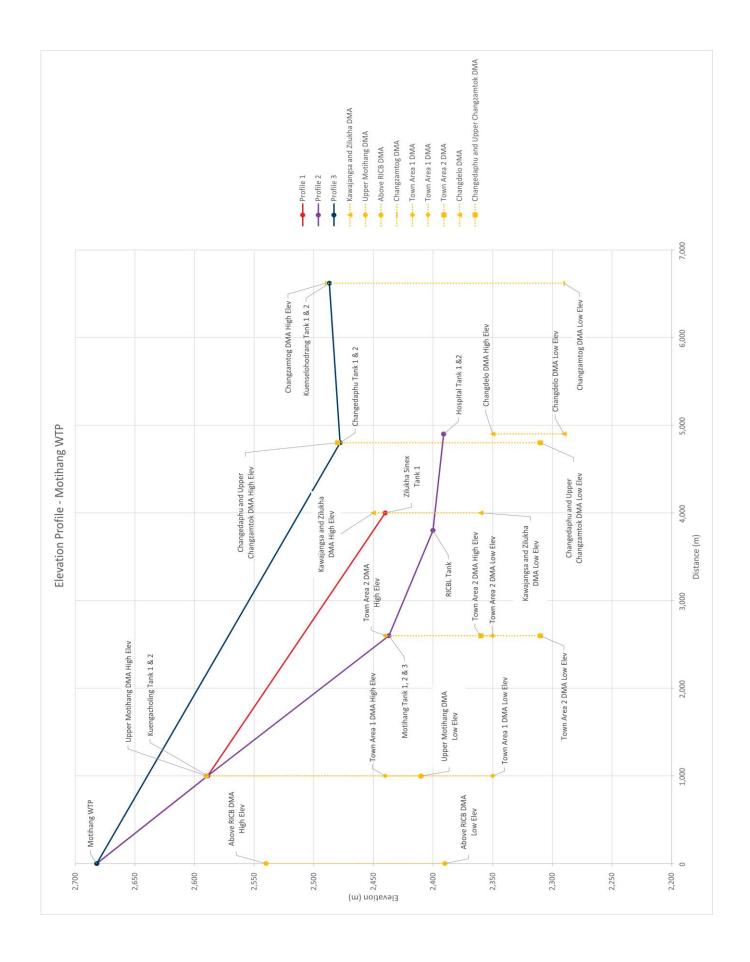

Value	Result
Storage Reservoir Name	Dzong Tank
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Hejo and Kawajangsa; Zilukha
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	3
Diameter of Inlet Pipes (mm)	150; 150; 75
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	100; 100
Operations	8am-11am and 3pm-6pm
Top Water Elevation (m)	2402.5
Bottom Water Elevation (m)	2399
Storage Reservoir Volume (m ³)	250
Storage Reservoir Material	RRM_rectangular

Storage Reservoir – Gabjakha Tank

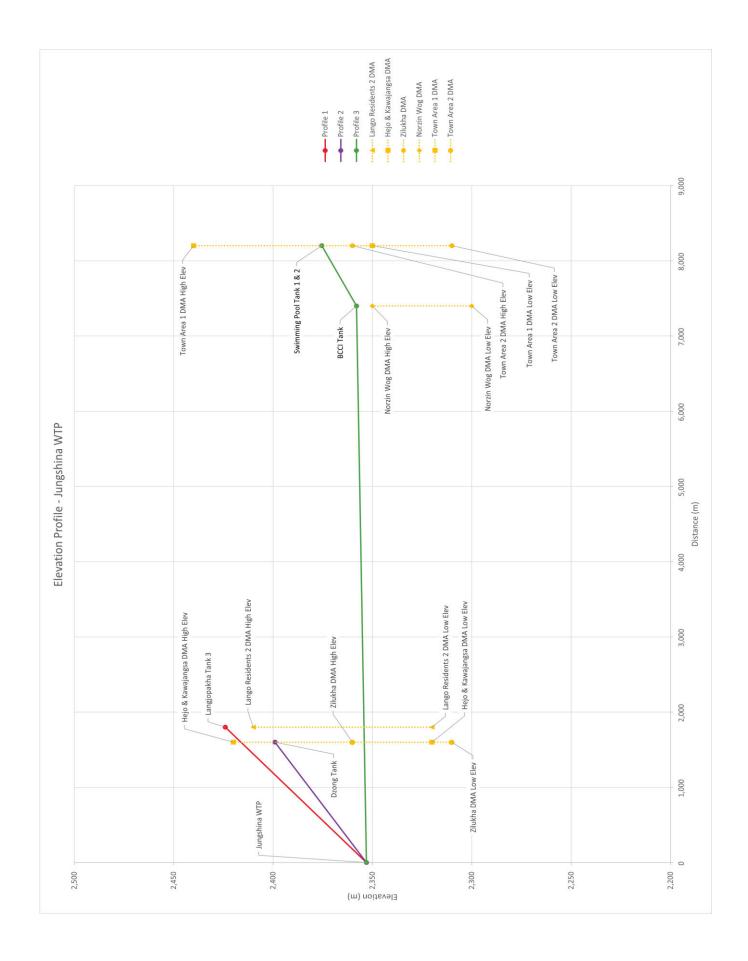

Value	Result
Storage Reservoir Name	Gabjakha Tank
Downstream Storage Reservoir(s)	Babesa 1; Simtokha Tank - Dantak
Adjacent Reservoir(s)	None
Downstream DMA(s)	Above Old Highway; Simtokha Tank - Dantak which supplies Babesa Left; Babesa Tank 1 which supplies Babesa Right
WTP Supplying Storage Reservoir	Chamgang Old WTP; Ngabirongchu WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	3
Diameter of Outlet Pipes (mm)	250; 150; 100
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2399.5
Bottom Water Elevation (m)	2396
Storage Reservoir Volume (m ³)	360
Storage Reservoir Material	RCC_circular


Storage Reservoir - Hosiptal Tank 2

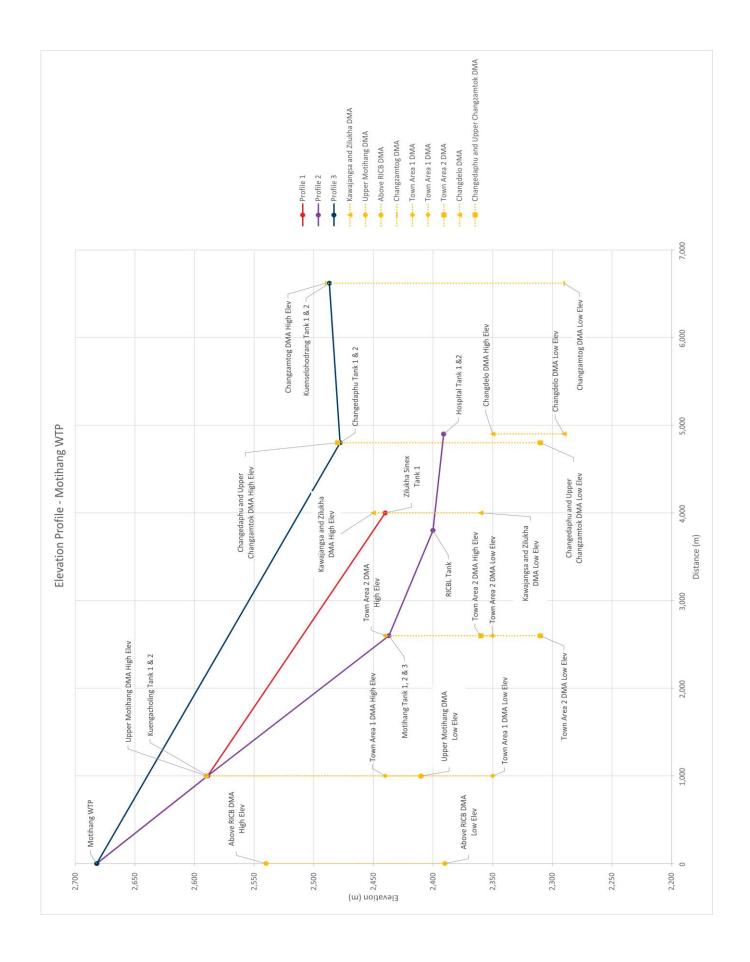
Value	Result
Storage Reservoir Name	Hosiptal Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Hospital Tank 1
Downstream DMA(s)	Hospital and Changdelo
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	2
Diameter of Inlet Pipes (mm)	150; 80
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2394.5
Bottom Water Elevation (m)	2391
Storage Reservoir Volume (m ³)	250
Storage Reservoir Material	RRM_rectangular


Storage Reservoir - Hospital Tank 1

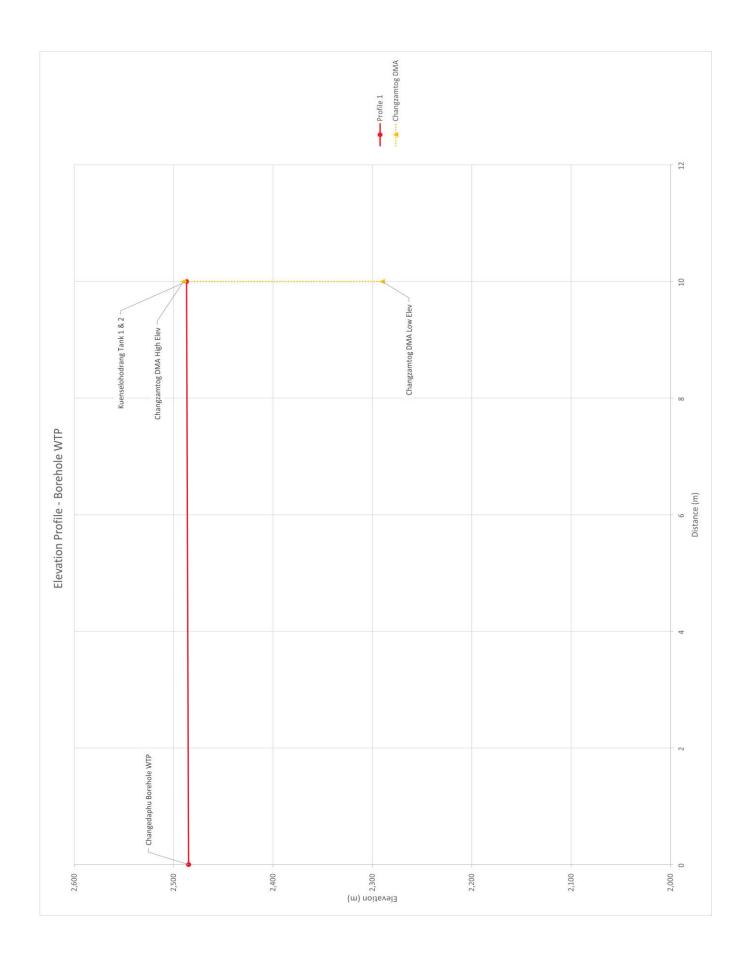
Value	Result
Storage Reservoir Name	Hospital Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Hosiptal Tank 2
Downstream DMA(s)	Hospital and Changdelo
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	2
Diameter of Inlet Pipes (mm)	150; 80
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2394.5
Bottom Water Elevation (m)	2391
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular


Storage Reservoir - Kuengacholing Tank 1

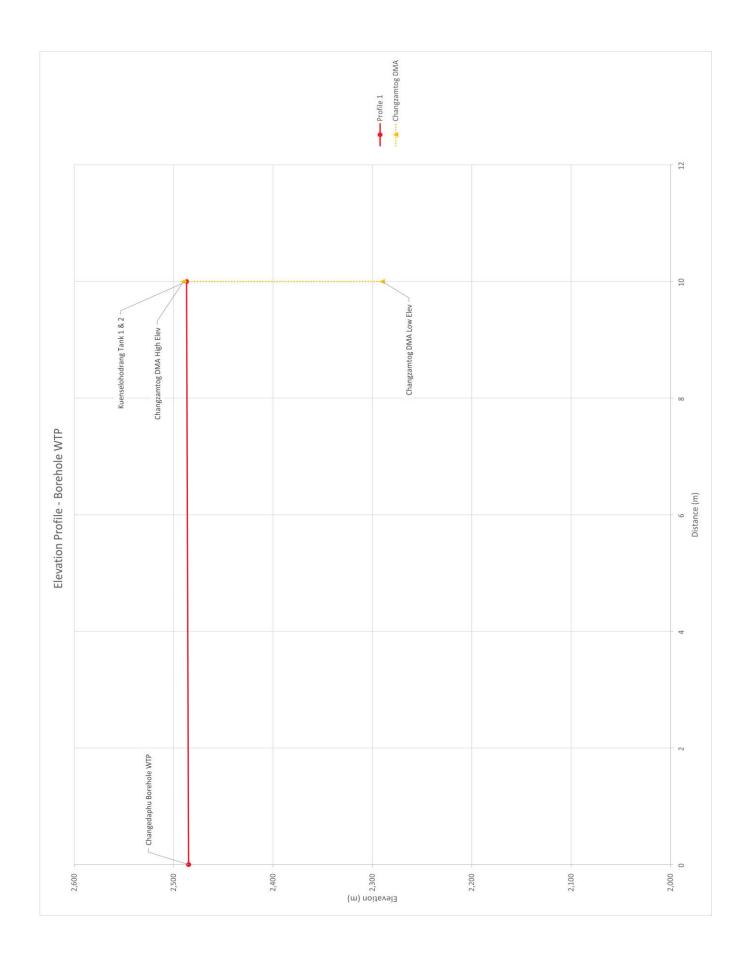
Value	Result
Storage Reservoir Name	Kuengacholing Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Kuengacholing Tank 2
Downstream DMA(s)	Upper Motihang; Zilukha Sintex Tank 1 which supplies Kawajangsa and Zilukha; Town Area 1; Town Area 2; Motihang Three Tanks which supplies RICBL Tanks and Hospital Tanks which supply Changdelo
WTP Supplying Storage Reservoir	Motihang WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	4
Diameter of Outlet Pipes (mm)	150; 100; 80; 80
Operations	8am-11am and 3pm-6pm
Top Water Elevation (m)	2592.5
Bottom Water Elevation (m)	2589
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular


Storage Reservoir – BCCI Tank

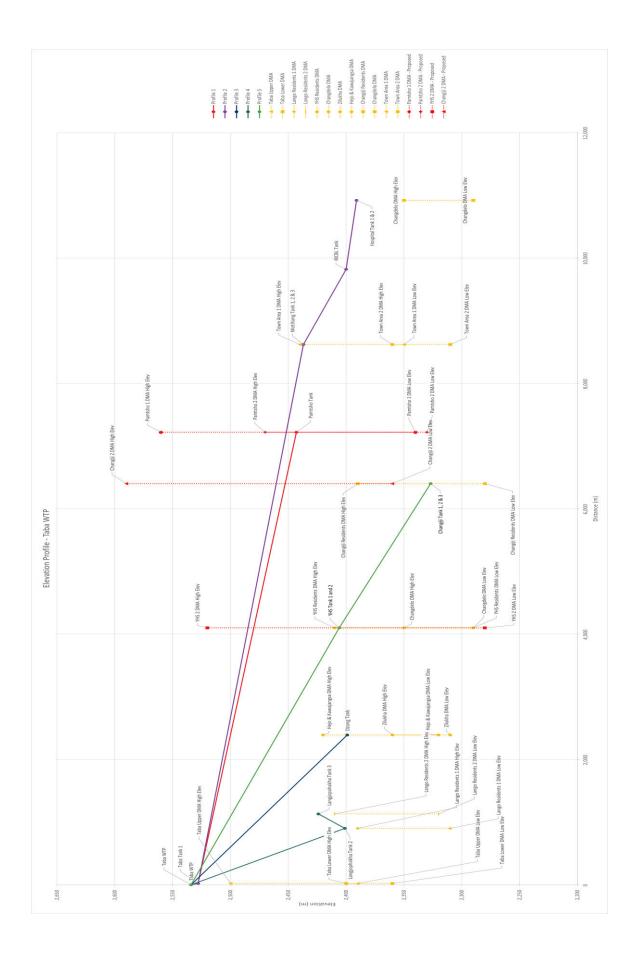
Value	Result
Storage Reservoir Name	BCCI Tank
Downstream Storage Reservoir(s)	Swimming pool tank 1; Swimming pool tank 2
Adjacent Reservoir(s)	None
Downstream DMA(s)	Norzin Wog; Swimming pool tank to Town Area 1; Swimming pool tank to Town Area 2; Swimming pool tank to hospital tank which services the hospital and Changdelo
WTP Supplying Storage Reservoir	Jungshina WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	100; 100
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2361.5
Bottom Water Elevation (m)	2358
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir - Kuengacholing Tank 2

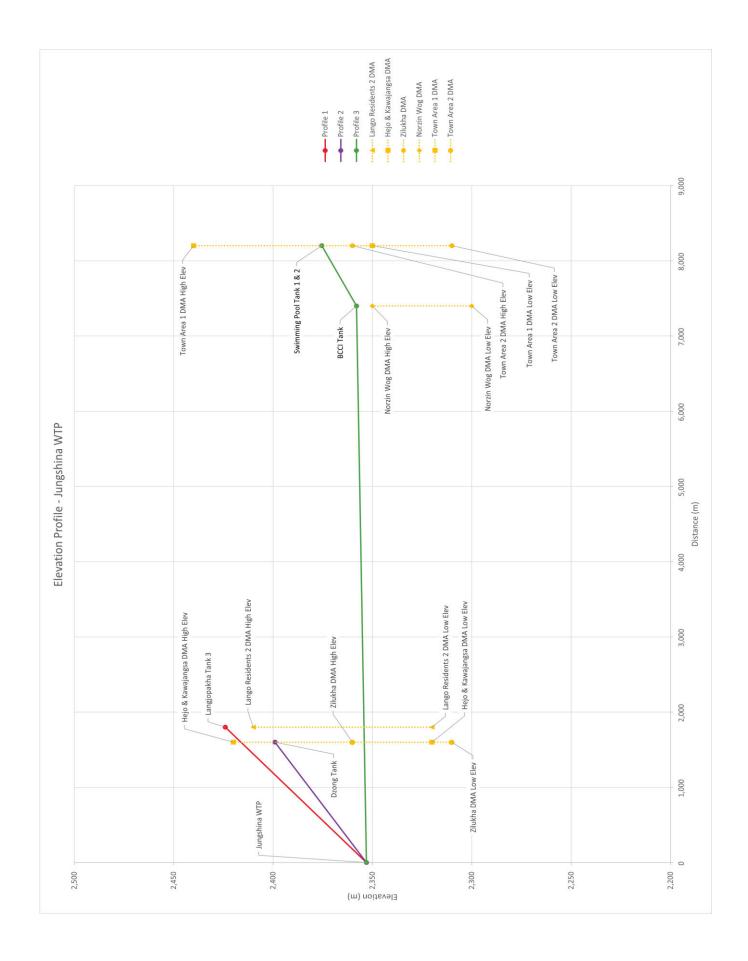
Value	Result
Storage Reservoir Name	Kuengacholing Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Kuengacholing Tank 1
Downstream DMA(s)	Upper Motihang; Zilukha Sintex Tank 1 which supplies Kawajangsa and Zilukha; Town Area 1; Town Area 2; Motihang Three Tanks which supplies RICBL Tanks and Hospital Tanks which supply Changdelo
WTP Supplying Storage Reservoir	Motihang WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	4
Diameter of Outlet Pipes (mm)	150; 100; 80; 80
Operations	8am-11am and 3pm-6pm
Top Water Elevation (m)	2593.5
Bottom Water Elevation (m)	2590
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular

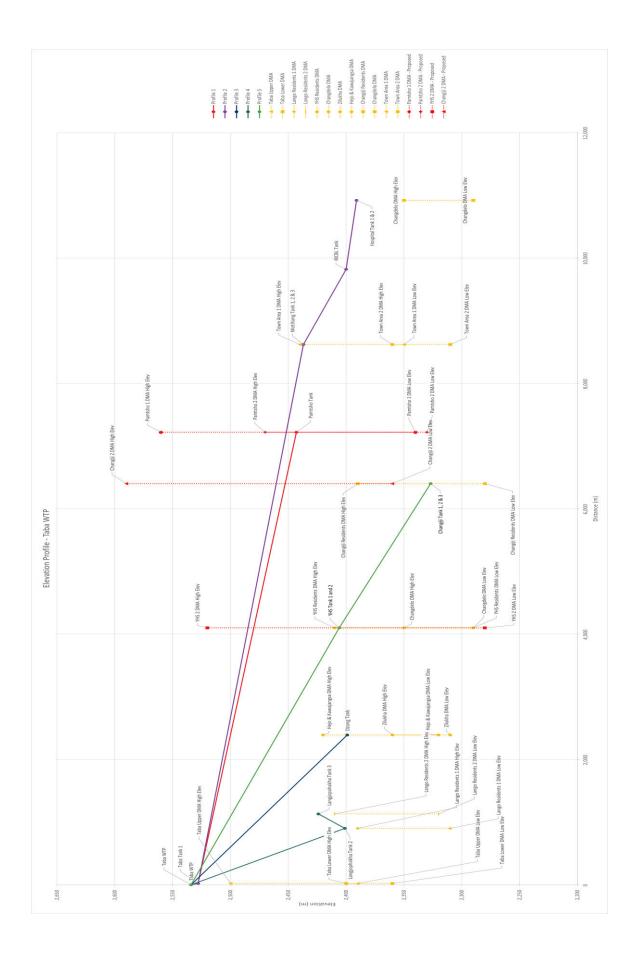

Storage Reservoir - Kuenselohodrang Tank 1

Value	Result
Storage Reservoir Name	Kuenselohodrang Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Kuenselphodreang Tank 2
Downstream DMA(s)	Changzamtog
WTP Supplying Storage Reservoir	Boreholes
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	Not provided
Top Water Elevation (m)	2490.5
Bottom Water Elevation (m)	2487
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir - Kuenselphodreang Tank 2

Value	Result
Storage Reservoir Name	Kuenselphodreang Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Kuenselohodrang Tank 1
Downstream DMA(s)	Changzamtog
WTP Supplying Storage Reservoir	Boreholes
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	Not provided
Top Water Elevation (m)	2488.5
Bottom Water Elevation (m)	2485
Storage Reservoir Volume (m ³)	100
Storage Reservoir Material	RCC_circular

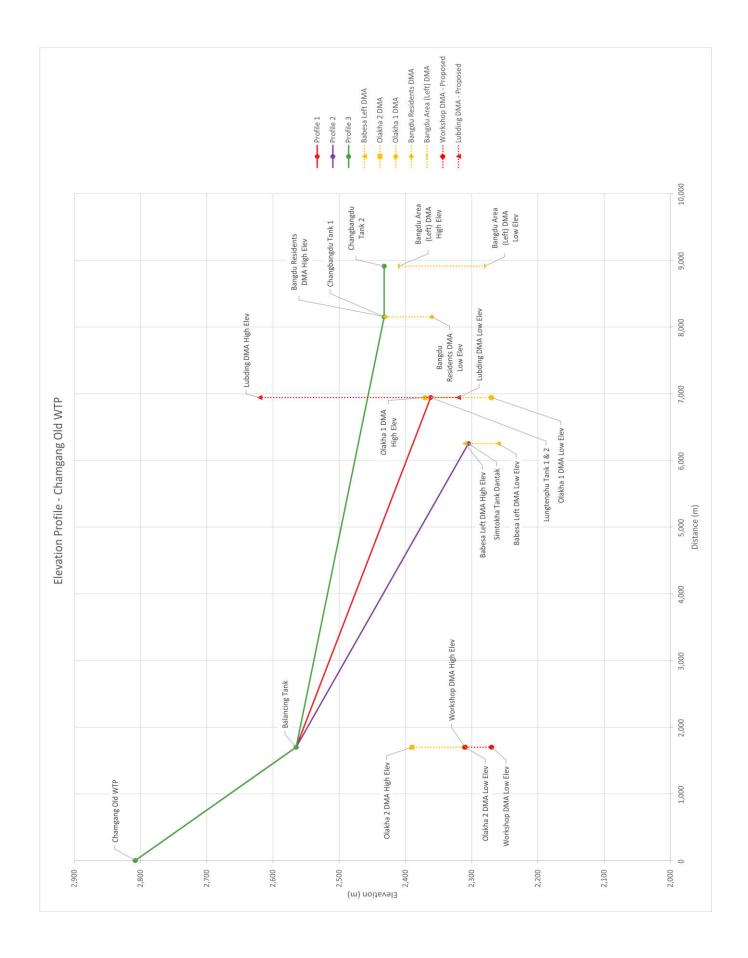

Storage Reservoir – Langjophakha Tank 2


Value	Result
Storage Reservoir Name	Langjophakha Tank 2
Downstream Storage Reservoir(s)	YHS 2 Tank; Changiji Tank 1; Changiji Tank 2; Changiji Tank 3
Adjacent Reservoir(s)	Langjophakha Tank 3
Downstream DMA(s)	Lango Residents 1; Langjophaka Tank 3 which supplies Lango Residents 2
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	150; 100
Operations	24hour
Top Water Elevation (m)	2404.5
Bottom Water Elevation (m)	2401
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular

Storage Reservoir - Langjophakha Tank 3

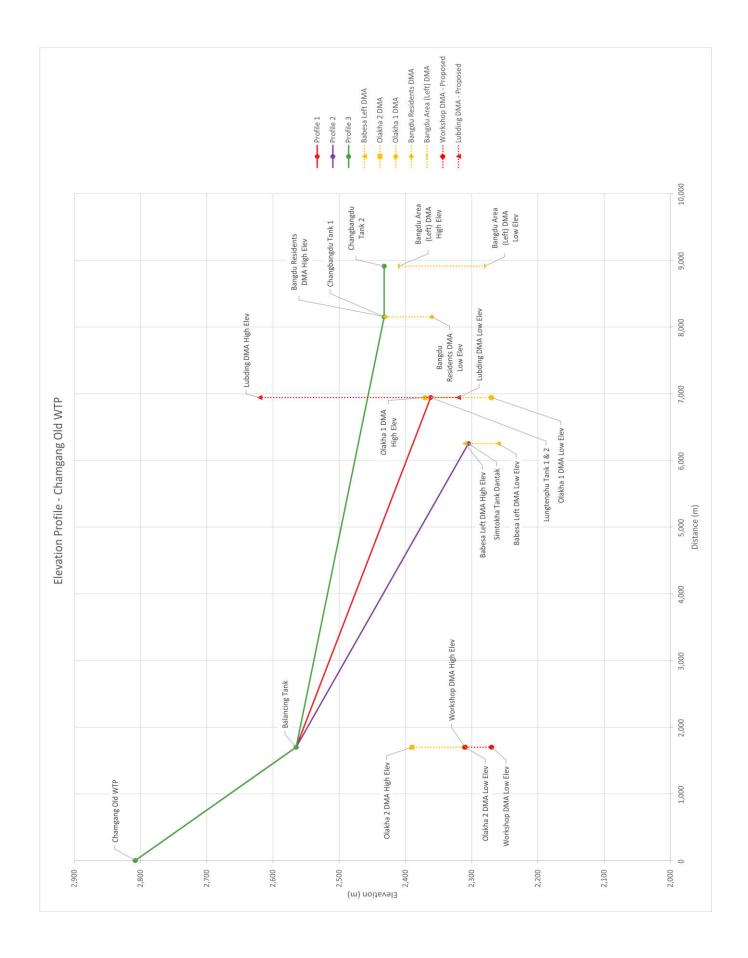
Value	Result
Storage Reservoir Name	Langjophakha Tank 3
Downstream Storage Reservoir(s)	YHS 2 Tank; Changiji Tank 1; Changiji Tank 2; Changiji Tank 3
Adjacent Reservoir(s)	Langjophakha Tank 2
Downstream DMA(s)	Lango Residents 2
WTP Supplying Storage Reservoir	Jungshina WTP; Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	63
Operations	24hour
Top Water Elevation (m)	2427.5
Bottom Water Elevation (m)	2424
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

Storage Reservoir - Lubding Tank 1

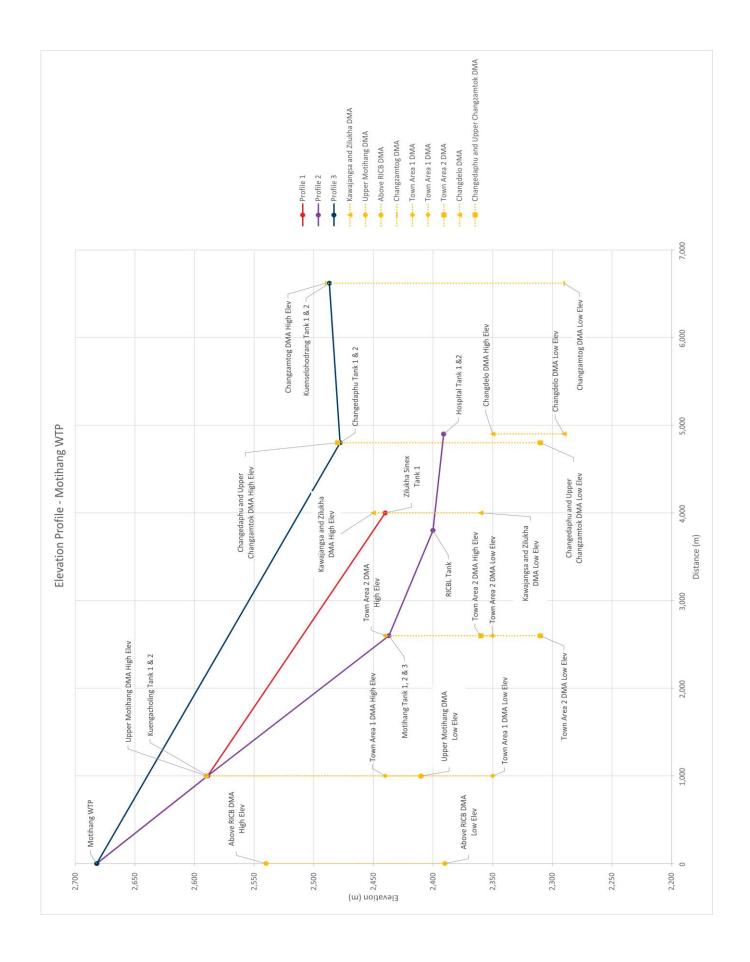

Value	Result
Storage Reservoir Name	Lubding Tank 1
Downstream Storage Reservoir(s)	Lubding Tank 2
Adjacent Reservoir(s)	Lubding Tank 2
Downstream DMA(s)	Lubding
WTP Supplying Storage Reservoir	Community Supply
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	100; 80
Operations	Not provided
Top Water Elevation (m)	2646.5
Bottom Water Elevation (m)	2643
Storage Reservoir Volume (m ³)	100
Storage Reservoir Material	RCC_circular

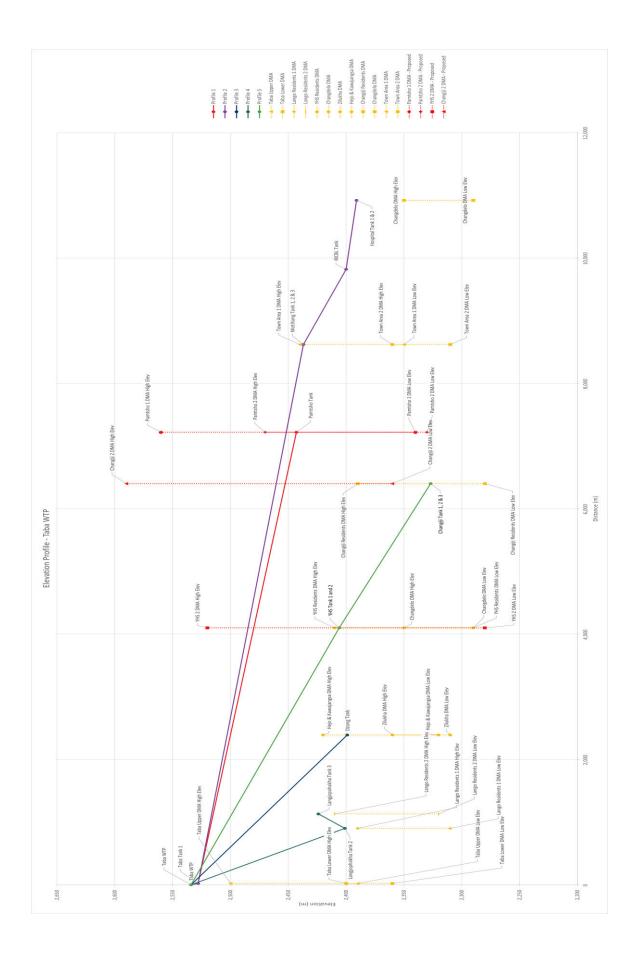
Storage Reservoir - Lubding Tank 2

Value	Result
Storage Reservoir Name	Lubding Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Lubding Tank 1
Downstream DMA(s)	Lubding
WTP Supplying Storage Reservoir	Community Supply
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	80
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	Not provided
Top Water Elevation (m)	2520.5
Bottom Water Elevation (m)	2517
Storage Reservoir Volume (m ³)	50
Storage Reservoir Material	RRM_rectangular

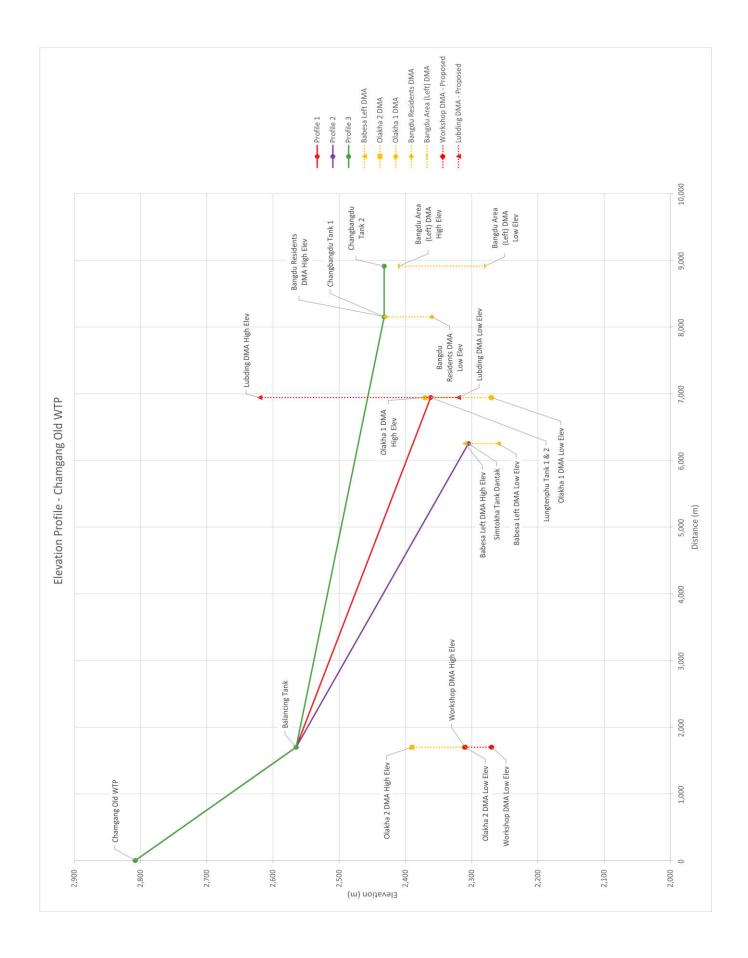

Storage Reservoir – Lungtenphu Tank 1

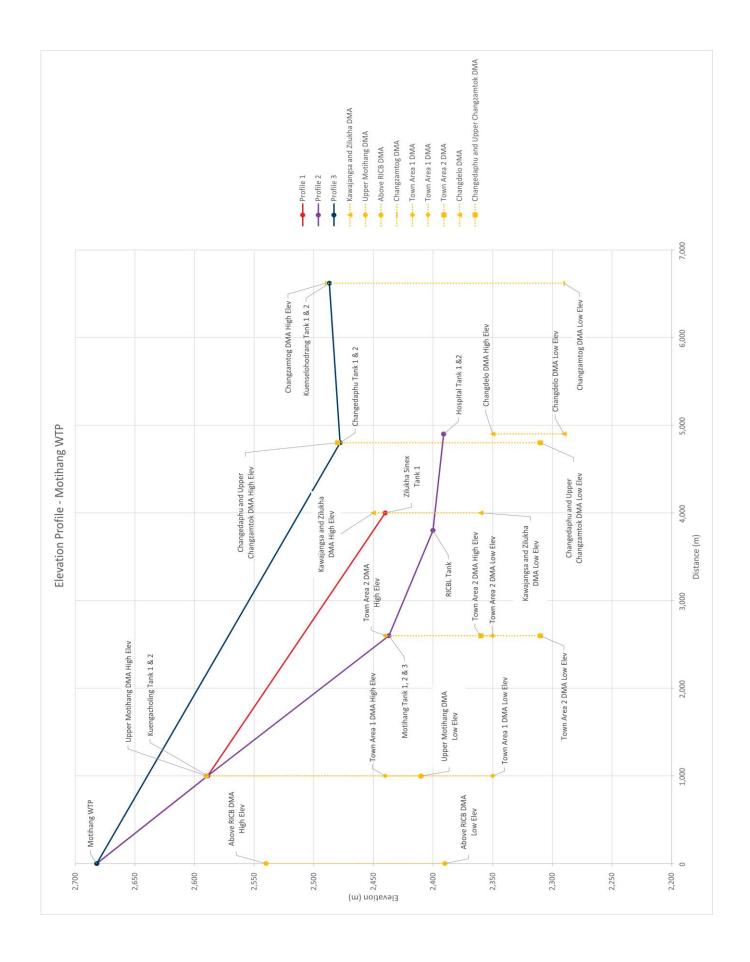
Value	Result
Storage Reservoir Name	Lungtenphu Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Lungtenphu Tank 2
Downstream DMA(s)	Olakha 1
WTP Supplying Storage Reservoir	Chamgang Old WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	200
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	200
Operations	6am-9am and 6pm-10pm
Top Water Elevation (m)	2365.5
Bottom Water Elevation (m)	2362
Storage Reservoir Volume (m ³)	450
Storage Reservoir Material	RCC_circular

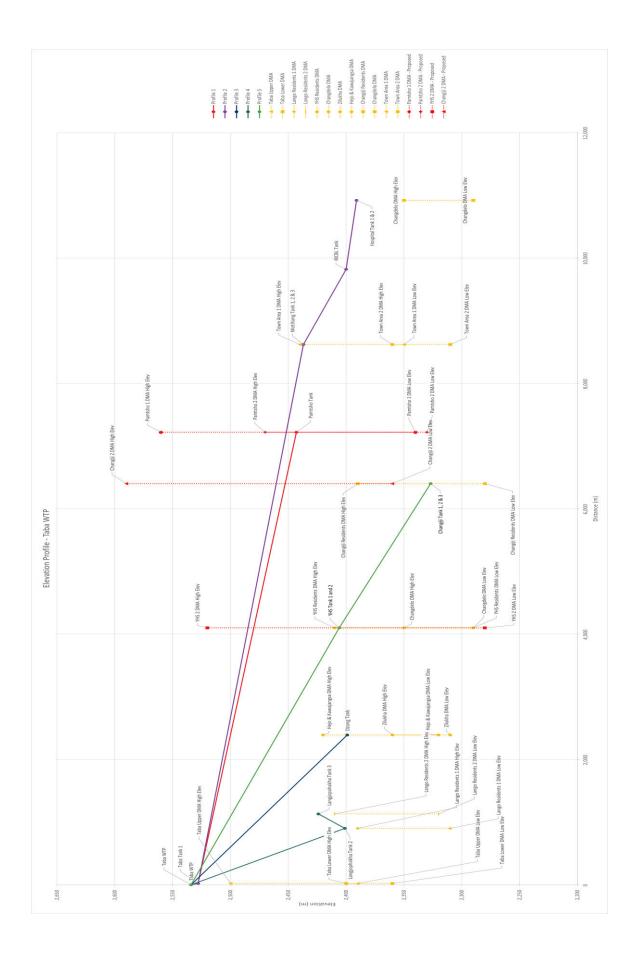

Storage Reservoir – Lungtenphu Tank 2


Value	Result
Storage Reservoir Name	Lungtenphu Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Lungtenphu Tank 1
Downstream DMA(s)	Olakha 1
WTP Supplying Storage Reservoir	Chamgang Old WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	200
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	200
Operations	6am-9am and 6pm-10pm
Top Water Elevation (m)	2365.5
Bottom Water Elevation (m)	2362
Storage Reservoir Volume (m ³)	360
Storage Reservoir Material	RCC_circular

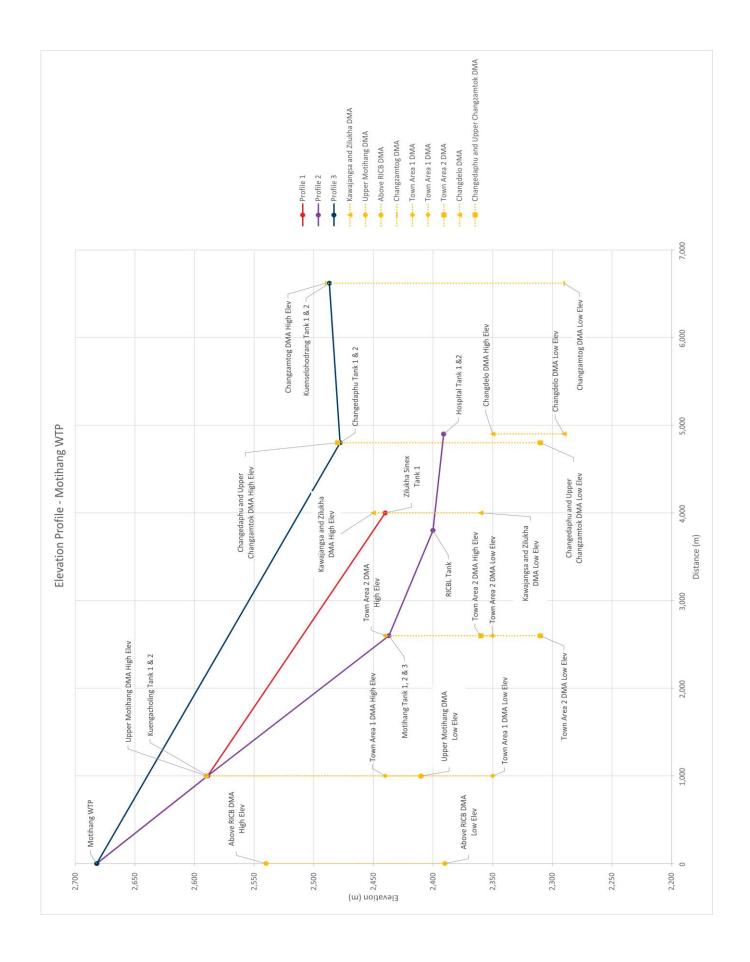
Storage Reservoir - Motithang Three Tanks 1

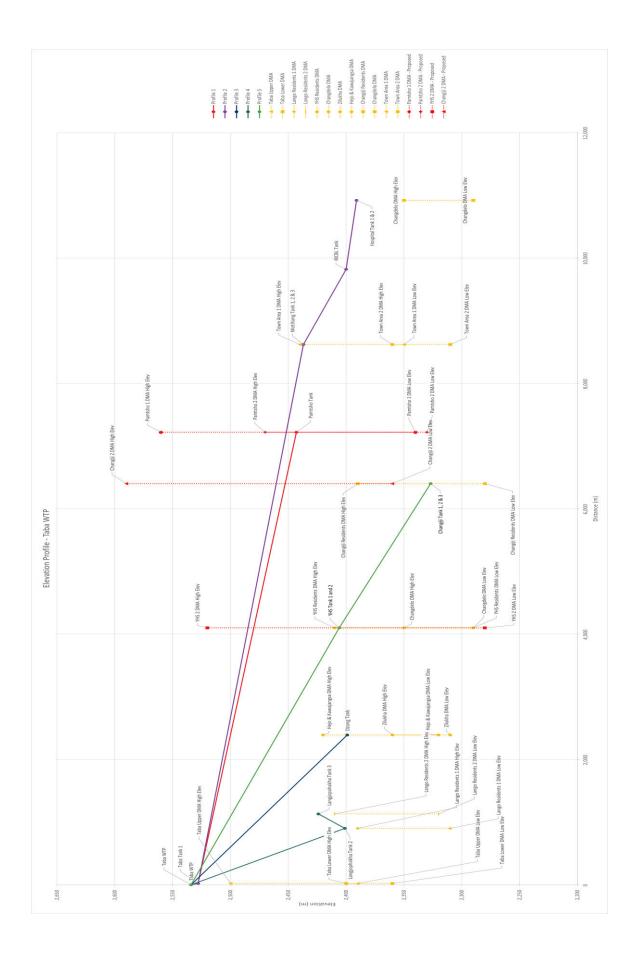

Value	Result
Storage Reservoir Name	Motithang Three Tanks 1
Downstream Storage Reservoir(s)	To RICB Tank
Adjacent Reservoir(s)	Motithang Three Tanks 2 and 3
Downstream DMA(s)	Town Area 1; Town Area 2; RICBL Tanks and Hospital Tanks which supply hospital and Changdelo
WTP Supplying Storage Reservoir	Motihang WTP; Taba WTP
Number of Inlet Pipes	2
Diameter of Inlet Pipes (mm)	200; 150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	200
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2440.5
Bottom Water Elevation (m)	2437
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular


Storage Reservoir – Changbangdu Tank 2

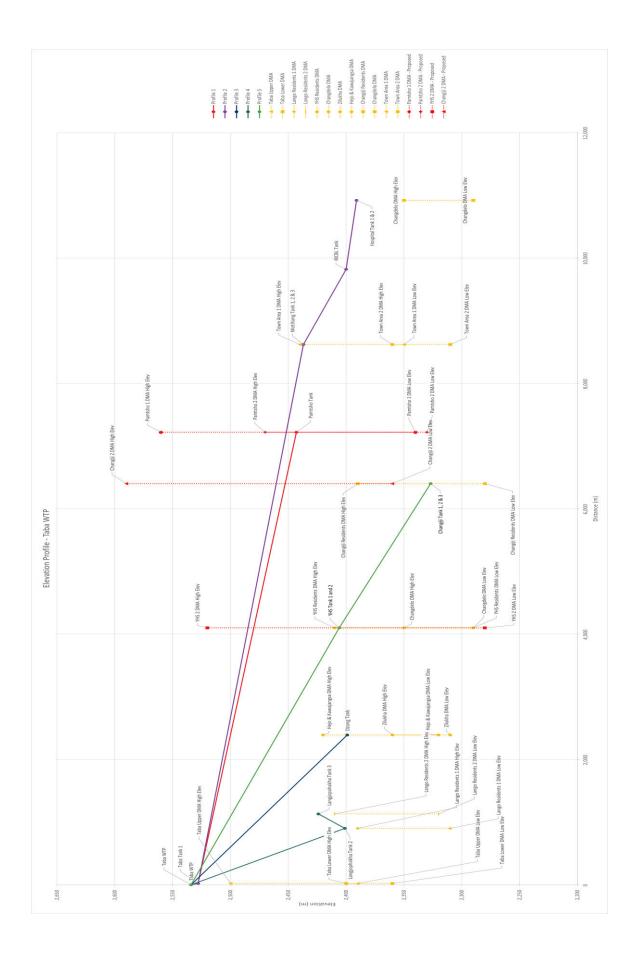

Value	Result
Storage Reservoir Name	Changbangdu Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Changbangdu Tank 1 and 3
Downstream DMA(s)	Bangdu Area (Left)
WTP Supplying Storage Reservoir	Chamgang Old WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	24hour
Top Water Elevation (m)	2391.5
Bottom Water Elevation (m)	2388
Storage Reservoir Volume (m ³)	270
Storage Reservoir Material	RCC_circular

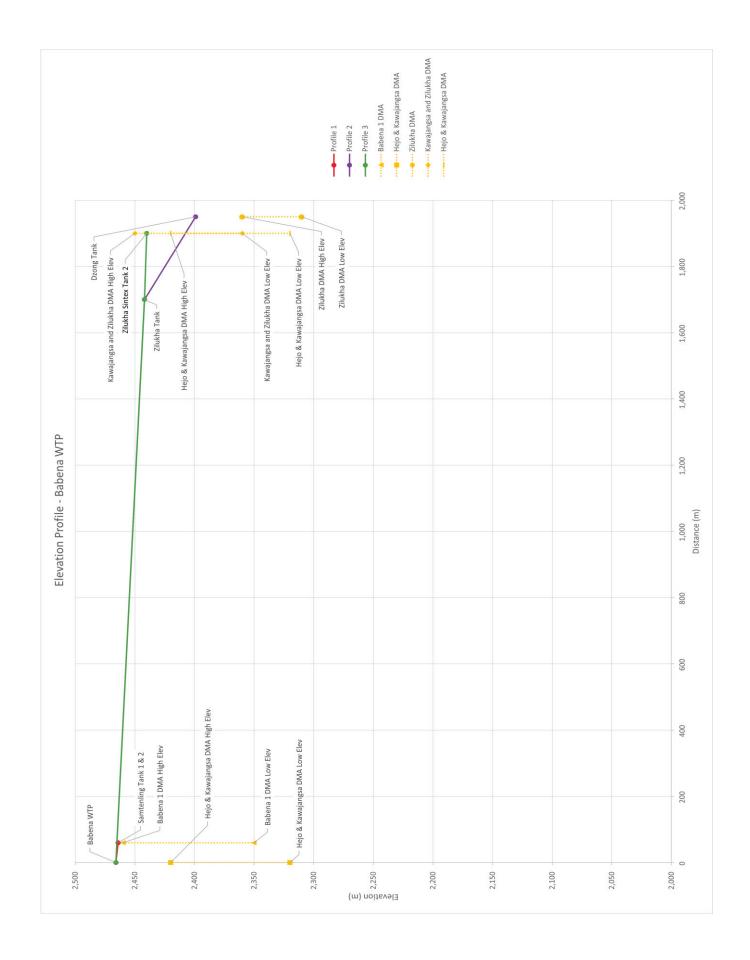
Storage Reservoir – Motithang Three Tanks 3


Value	Result
Storage Reservoir Name	Motithang Three Tanks 3
Downstream Storage Reservoir(s)	To RICB Tank
Adjacent Reservoir(s)	Motithang Three Tanks 1 and 2
Downstream DMA(s)	Town Area 1; Town Area 2; RICBL Tanks and Hospital Tanks which supply hospital and Changdelo
WTP Supplying Storage Reservoir	Motihang WTP; Taba WTP
Number of Inlet Pipes	2
Diameter of Inlet Pipes (mm)	150; 150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	200
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2439.5
Bottom Water Elevation (m)	2436
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular

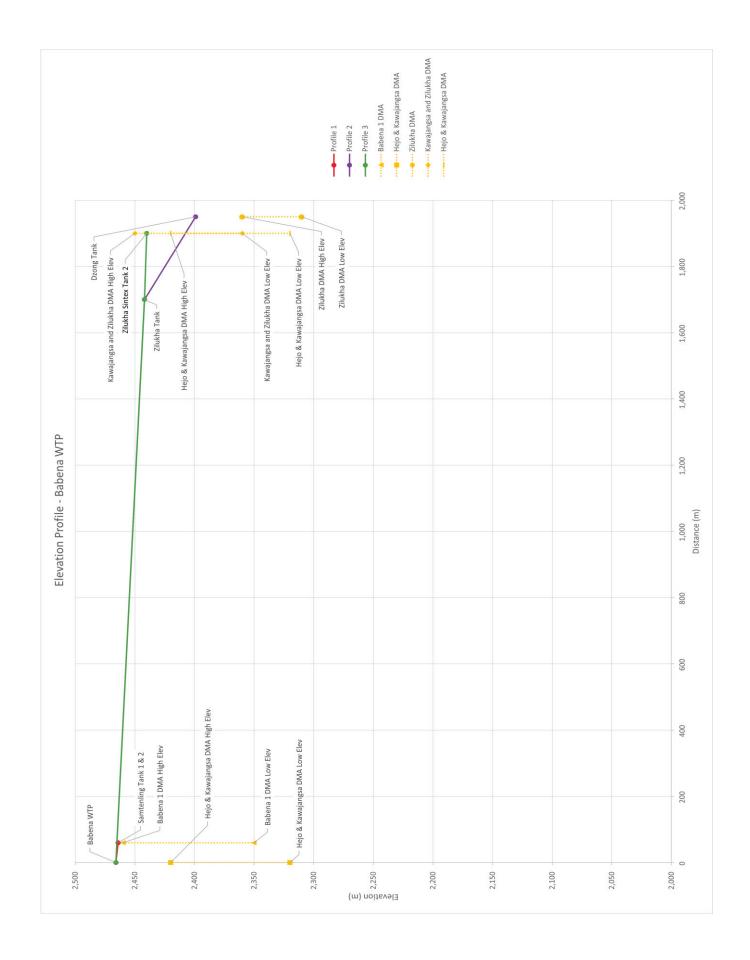


Storage Reservoir – Motithang Three Tanks 2

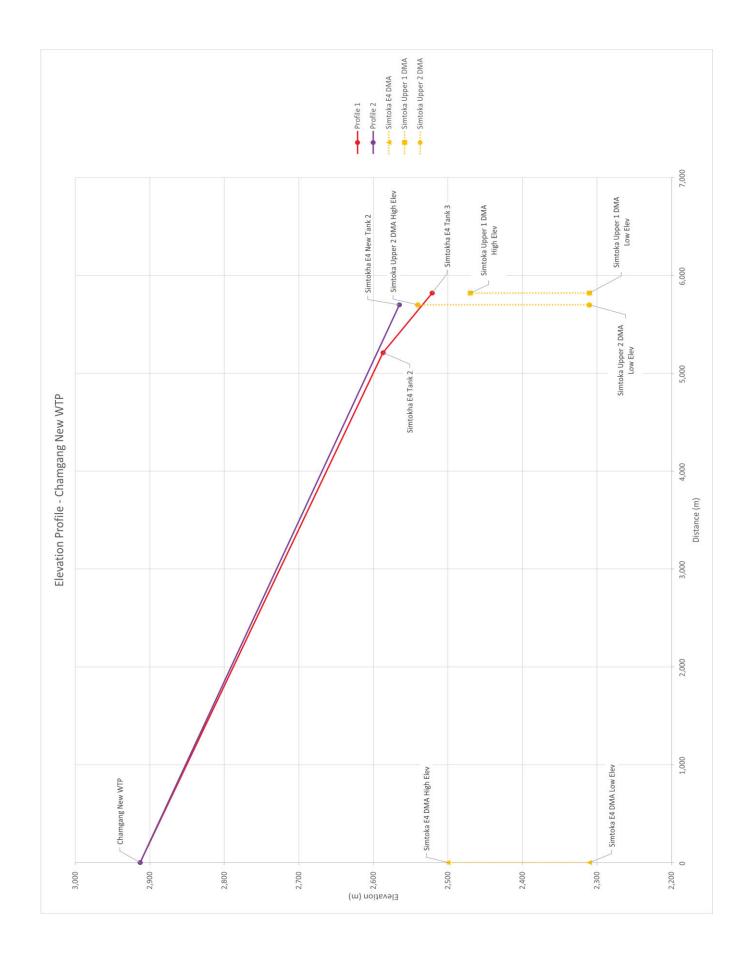

Value	Result
Storage Reservoir Name	Motithang Three Tanks 2
Downstream Storage Reservoir(s)	To RICB Tank
Adjacent Reservoir(s)	Motithang Three Tanks 1 and 3
Downstream DMA(s)	Town Area 1; Town Area 2; RICBL Tanks and Hospital Tanks which supply hospital and Changdelo
WTP Supplying Storage Reservoir	Motihang WTP; Taba WTP
Number of Inlet Pipes	2
Diameter of Inlet Pipes (mm)	150; 150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	200
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2440.5
Bottom Water Elevation (m)	2437
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular


Storage Reservoir - RICBL Tank

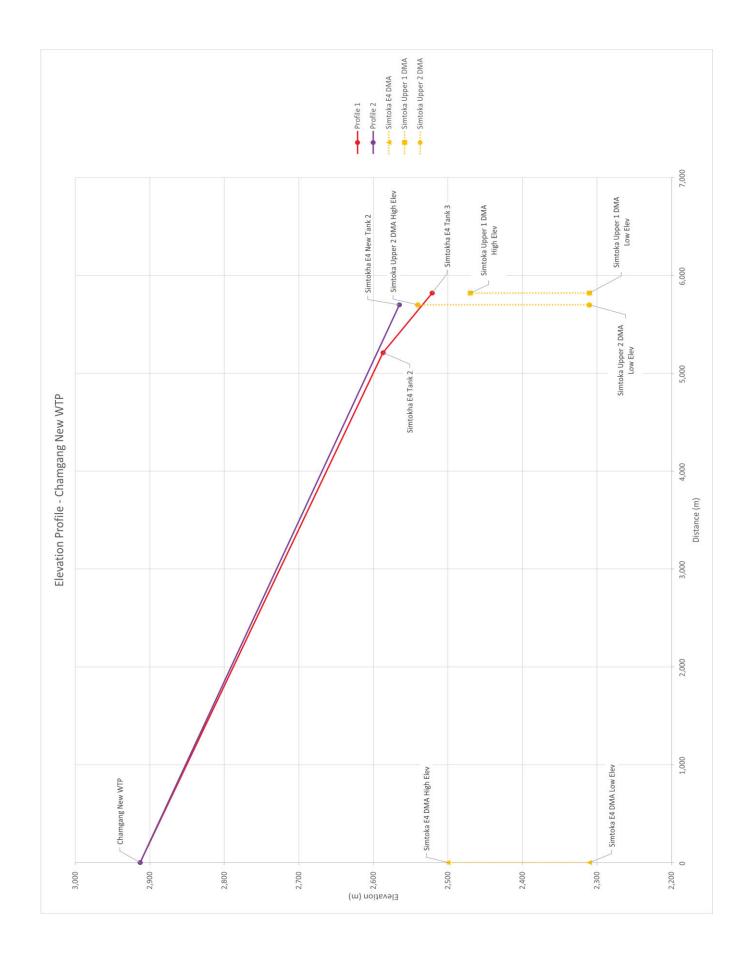
Value	Result
Storage Reservoir Name	RICBL Tank
Downstream Storage Reservoir(s)	Hospital Tank
Adjacent Reservoir(s)	None
Downstream DMA(s)	no demand - supplies Hospital Tank which supply Changdelo
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	200
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	150
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2403.5
Bottom Water Elevation (m)	2400
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular


Storage Reservoir - Samtenling Tank 1

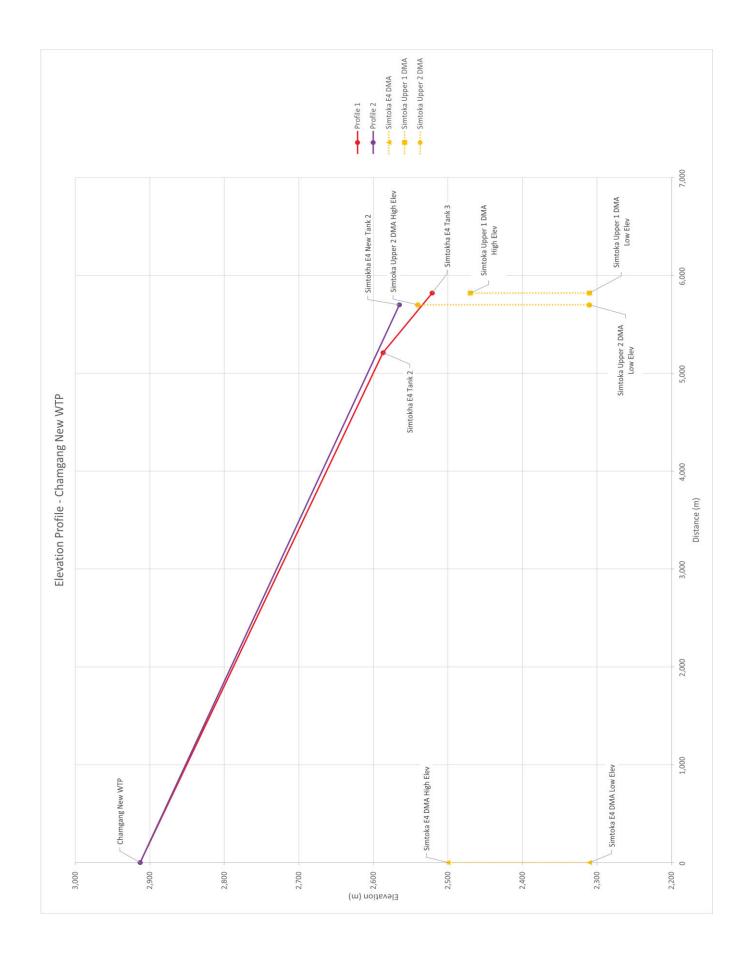
Value	Result
Storage Reservoir Name	Samtenling Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Samtenling Tank 2
Downstream DMA(s)	Babena 1
WTP Supplying Storage Reservoir	Babena WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	150
Operations	Not provided
Top Water Elevation (m)	2467.5
Bottom Water Elevation (m)	2464
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir - Samtenling Tank 2

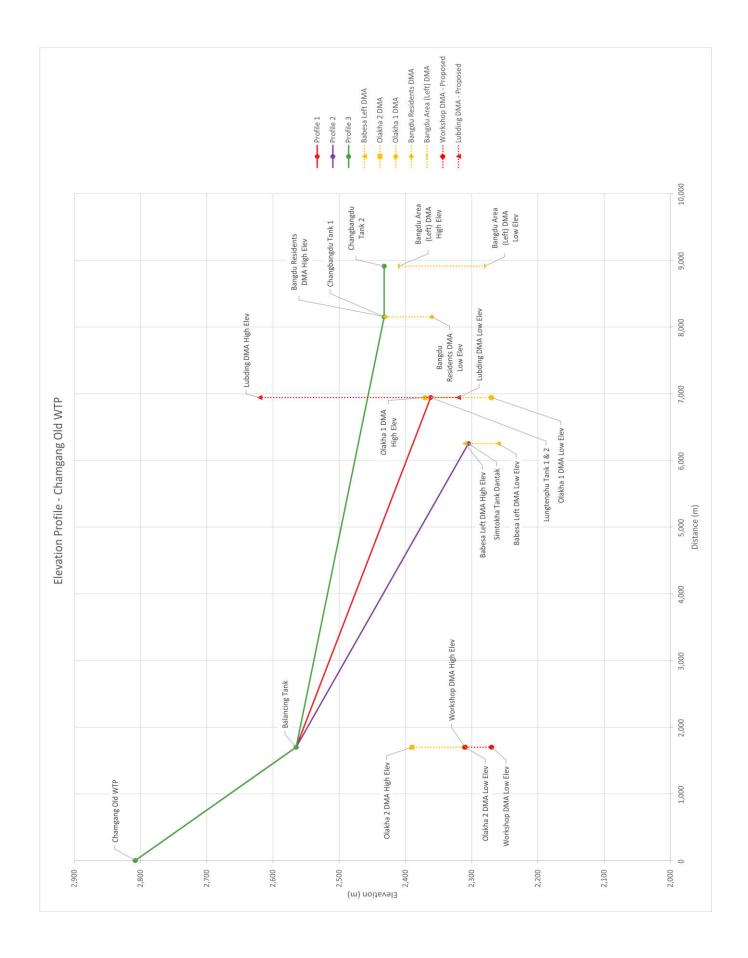
Value	Result
Storage Reservoir Name	Samtenling Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Samtenling Tank 1
Downstream DMA(s)	Babena 1
WTP Supplying Storage Reservoir	Babena WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	150
Operations	Not provided
Top Water Elevation (m)	2467.5
Bottom Water Elevation (m)	2464
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir – Simtokha E4 New Tank 2

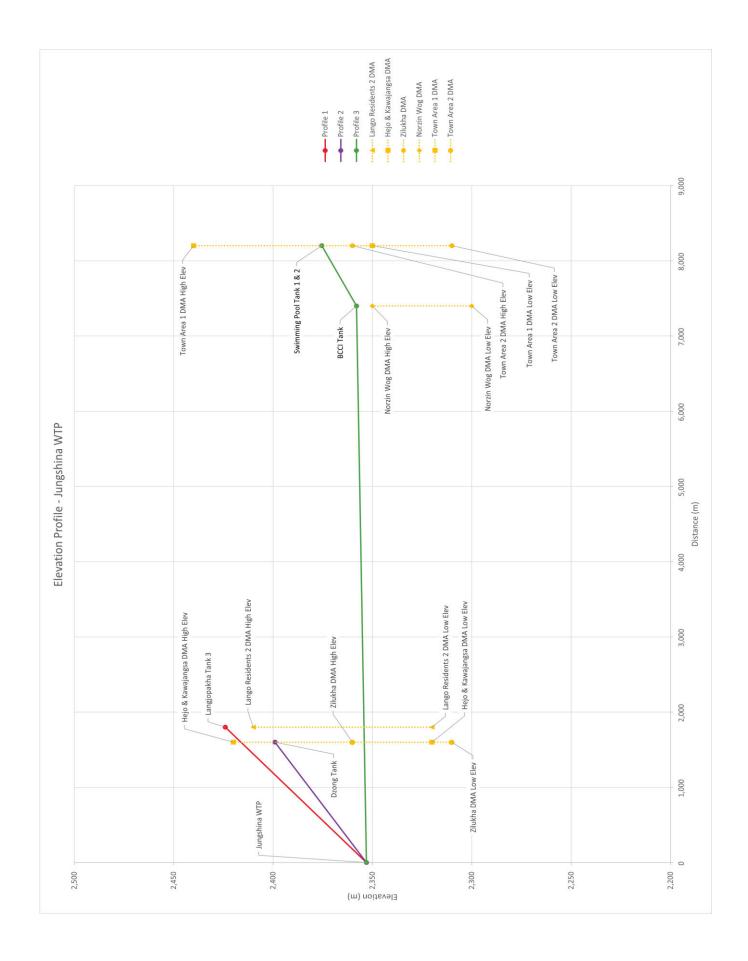
Value	Result
Storage Reservoir Name	Simtokha E4 New Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Simtoka Upper 2
WTP Supplying Storage Reservoir	Chamgang New WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	Not provided
Top Water Elevation (m)	2522.5
Bottom Water Elevation (m)	2519
Storage Reservoir Volume (m ³)	200
Storage Reservoir Material	Zincalume


Storage Reservoir - Simtokha E4 Tank 3

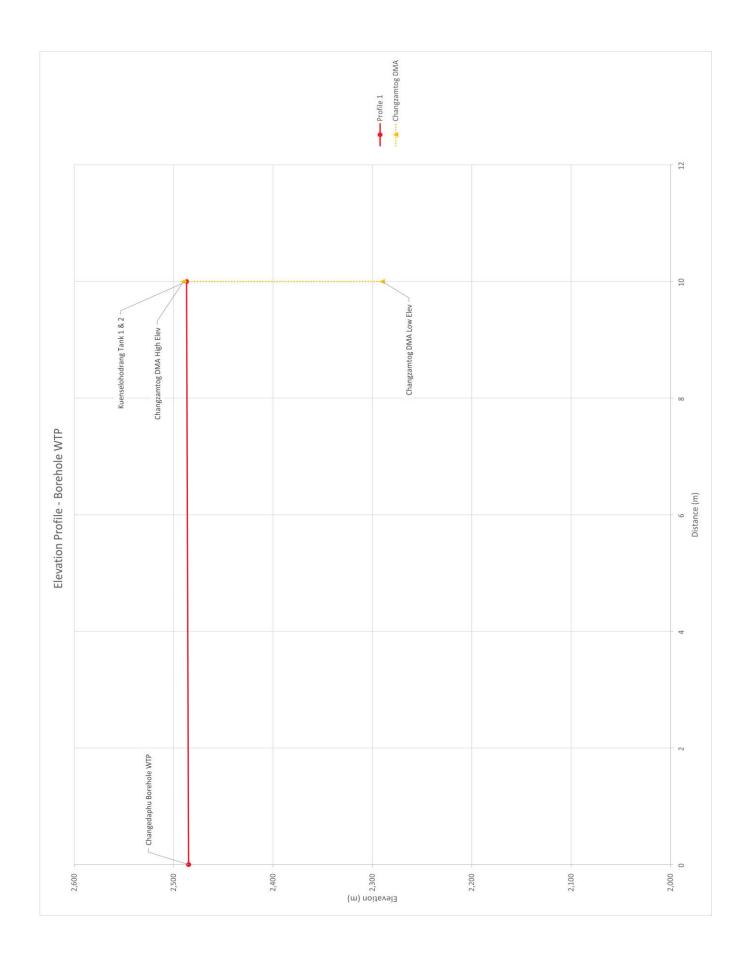
Value	Result
Storage Reservoir Name	Simtokha E4 Tank 3
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Simtoka Upper 1
WTP Supplying Storage Reservoir	Chamgang New WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	Not provided
Top Water Elevation (m)	2524.5
Bottom Water Elevation (m)	2521
Storage Reservoir Volume (m ³)	50
Storage Reservoir Material	RRM_rectangular


Storage Reservoir – Simtokha E4 Tank 2

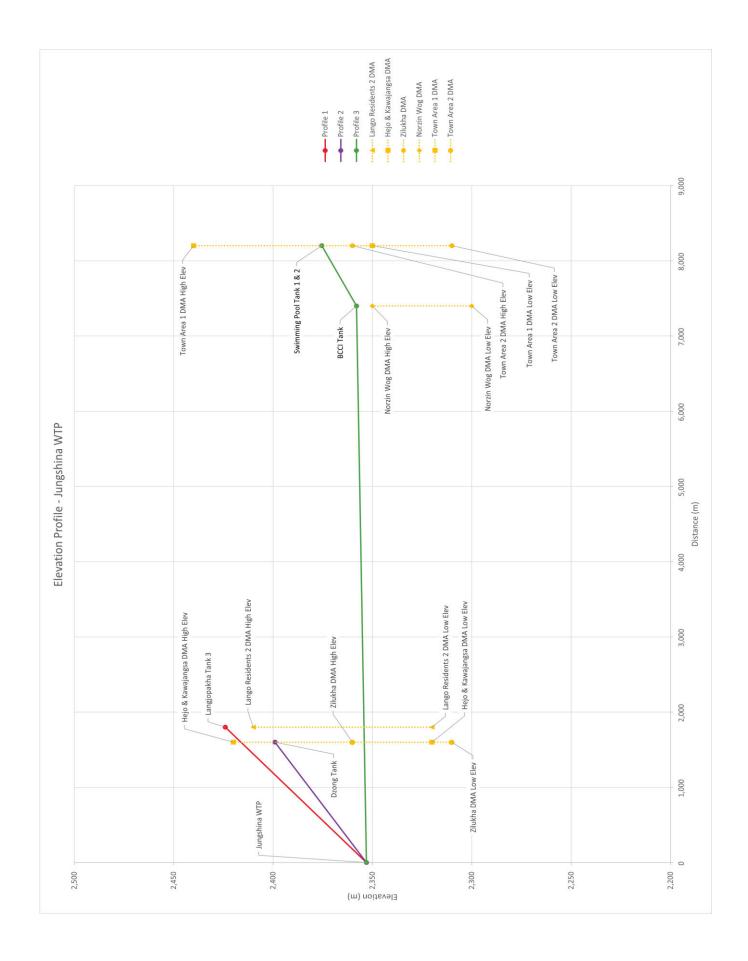
Value	Result
Storage Reservoir Name	Simtokha E4 Tank 2
Downstream Storage Reservoir(s)	Simtokha E4 Tank 3
Adjacent Reservoir(s)	None
Downstream DMA(s)	Simtoka Upper 1
WTP Supplying Storage Reservoir	Chamgang New WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	Not provided
Top Water Elevation (m)	2590.5
Bottom Water Elevation (m)	2587
Storage Reservoir Volume (m ³)	50
Storage Reservoir Material	RRM_rectangular


Storage Reservoir – Simtokha Tank Dantak

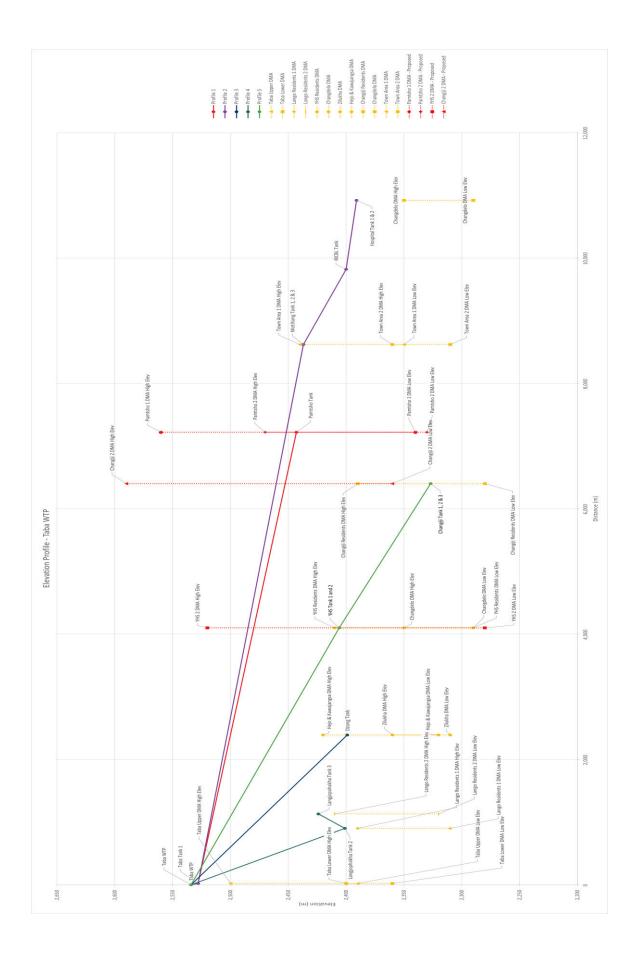
Value	Result
Storage Reservoir Name	Simtokha Tank Dantak
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Babesa Left
WTP Supplying Storage Reservoir	Chamgang Old WTP
Number of Inlet Pipes	2
Diameter of Inlet Pipes (mm)	250
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	200
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2308.5
Bottom Water Elevation (m)	2305
Storage Reservoir Volume (m ³)	735
Storage Reservoir Material	RCC


Storage Reservoir - Swimming Pool Tank 1

Value	Result
Storage Reservoir Name	Swimming Pool Tank 1
Downstream Storage Reservoir(s)	Hospital Tank
Adjacent Reservoir(s)	Swimming Pool Tank 2
Downstream DMA(s)	Town Area 1; Town Area 2; Hospital Tanks which supply hospital and Changdelo
WTP Supplying Storage Reservoir	Jungshina WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	100; 80
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2375.5
Bottom Water Elevation (m)	2372
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir - Changbangdu Tank 3

Value	Result
Storage Reservoir Name	Changbangdu Tank 3
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Changbangdu Tank 1 and 2
Downstream DMA(s)	None - Supplies Boreholes WTP
WTP Supplying Storage Reservoir	Boreholes
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	150
Operations	Not provided
Top Water Elevation (m)	2400.5
Bottom Water Elevation (m)	2397
Storage Reservoir Volume (m ³)	supplies Boreholes WTP
Storage Reservoir Material	RCC_circular

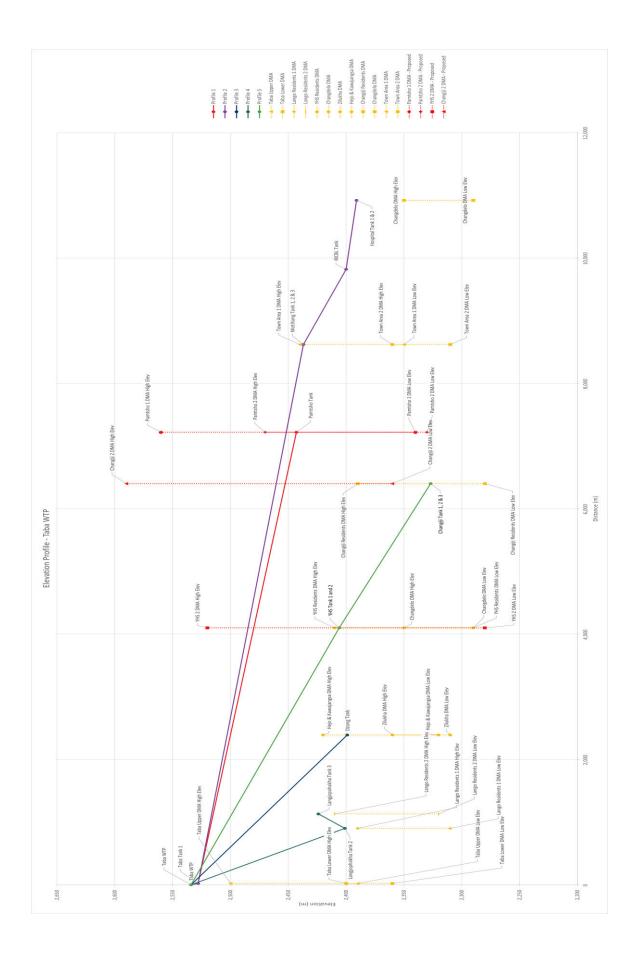

Storage Reservoir – Swimming Pool Tank 2

Value	Result
Storage Reservoir Name	Swimming Pool Tank 2
Downstream Storage Reservoir(s)	Hospital Tank
Adjacent Reservoir(s)	Swimming Pool Tank 1
Downstream DMA(s)	Town Area 1; Town Area 2; Hospital Tanks which supply hospital and Changdelo
WTP Supplying Storage Reservoir	Jungshina WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	100; 80
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2375.5
Bottom Water Elevation (m)	2372
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

Storage Reservoir – Taba Tank

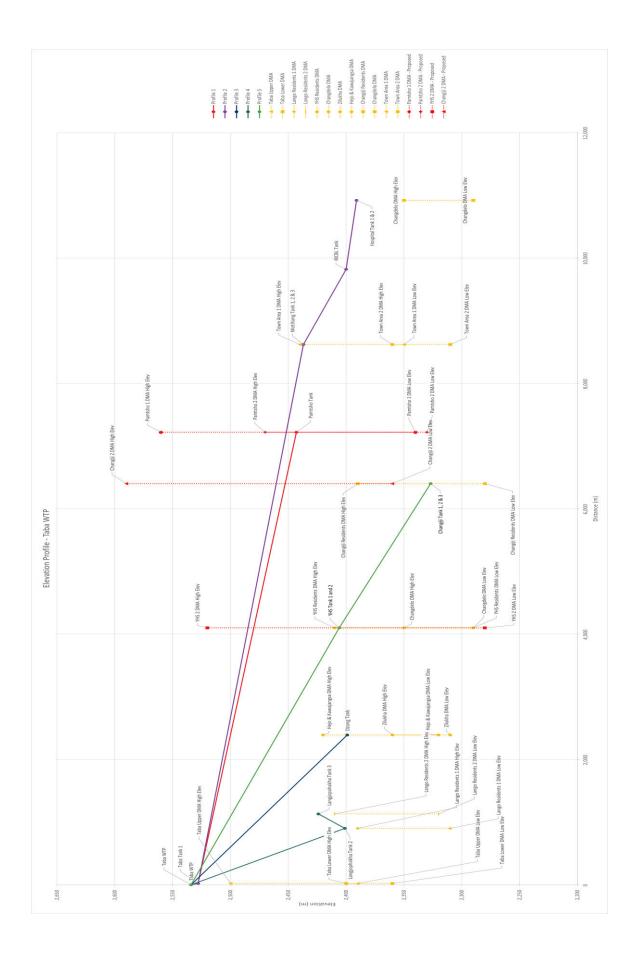
Value	Result
Storage Reservoir Name	Taba Tank
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	None
Downstream DMA(s)	Taba Upper; Taba Lower
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	400
Number of Outlet Pipes	3
Diameter of Outlet Pipes (mm)	200; 200; 150
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2531.5
Bottom Water Elevation (m)	2528
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

Value	Result
Storage Reservoir Name	Workshop Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Workshop Tank 2, 3 and 4
Downstream DMA(s)	Workshop
WTP Supplying Storage Reservoir	Private Supply
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	75
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	75
Operations	Not provided
Top Water Elevation (m)	2307.5
Bottom Water Elevation (m)	2304
Storage Reservoir Volume (m ³)	2
Storage Reservoir Material	Syntax

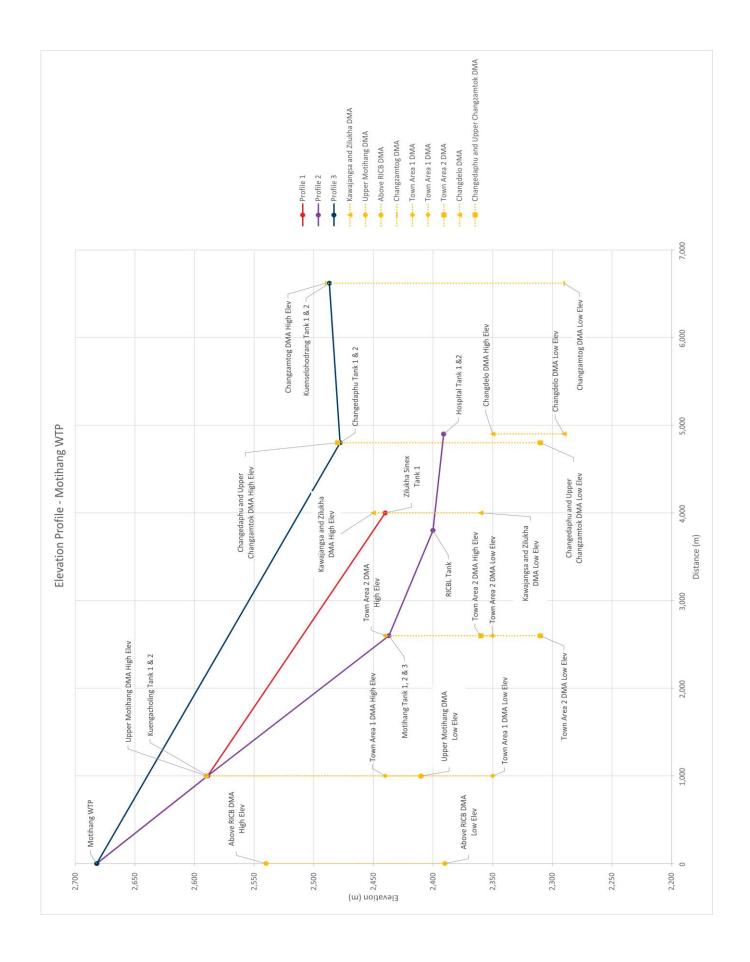

Value	Result
Storage Reservoir Name	Workshop Tank 2
Downstream Storage Reservoir(s)	Workshop Tank 1
Adjacent Reservoir(s)	Workshop Tank 1, 3 and 4
Downstream DMA(s)	Workshop
WTP Supplying Storage Reservoir	Private Supply
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	75
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	75
Operations	Not provided
Top Water Elevation (m)	2309.5
Bottom Water Elevation (m)	2306
Storage Reservoir Volume (m ³)	2
Storage Reservoir Material	Syntax

Value	Result
Storage Reservoir Name	Workshop Tank 3
Downstream Storage Reservoir(s)	Workshop Tank 4
Adjacent Reservoir(s)	Workshop Tank 1, 2 and 4
Downstream DMA(s)	Workshop
WTP Supplying Storage Reservoir	Private Supply
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	75
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	75
Operations	Not provided
Top Water Elevation (m)	2296.5
Bottom Water Elevation (m)	2293
Storage Reservoir Volume (m ³)	2
Storage Reservoir Material	Syntax

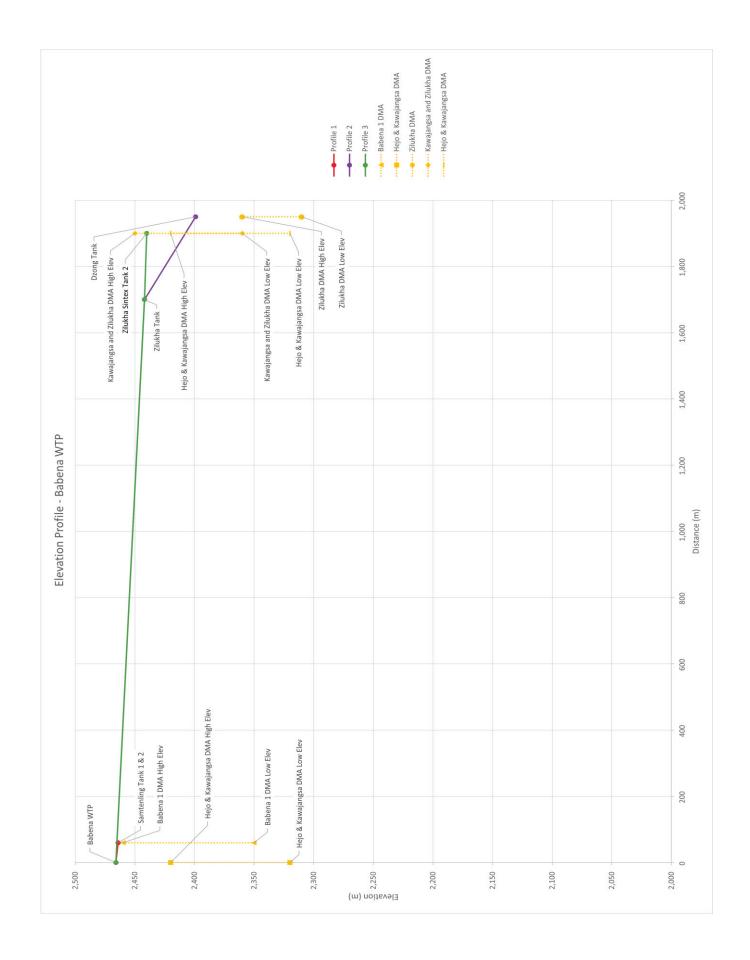
Value	Result
Storage Reservoir Name	Workshop Tank 4
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Workshop Tank 1, 2 and 3
Downstream DMA(s)	Workshop
WTP Supplying Storage Reservoir	Private Supply
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	75
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	75
Operations	Not provided
Top Water Elevation (m)	2295.5
Bottom Water Elevation (m)	2292
Storage Reservoir Volume (m ³)	2
Storage Reservoir Material	Syntax


Storage Reservoir - YHS Tank 1

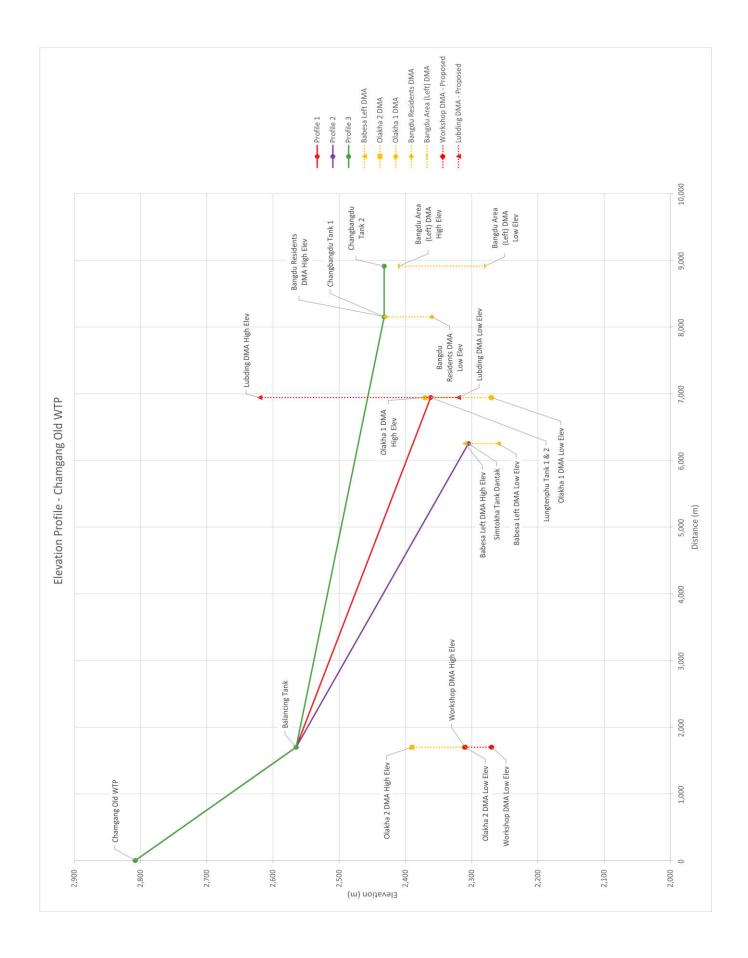
Value	Result
Storage Reservoir Name	YHS Tank 1
Downstream Storage Reservoir(s)	Changjiji tank 1; Changjiji tank 2; Changjiji tank 3
Adjacent Reservoir(s)	YHS Tank 2
Downstream DMA(s)	YHS Residents; Changdelo; Changjiji Tank 1, 2 and 3 which serves Changiji Residents
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	200
Number of Outlet Pipes	3
Diameter of Outlet Pipes (mm)	150; 100; 80
Operations	24hour
Top Water Elevation (m)	2406.5
Bottom Water Elevation (m)	2403
Storage Reservoir Volume (m ³)	320
Storage Reservoir Material	RCC_circular


Storage Reservoir - YHS Tank 2

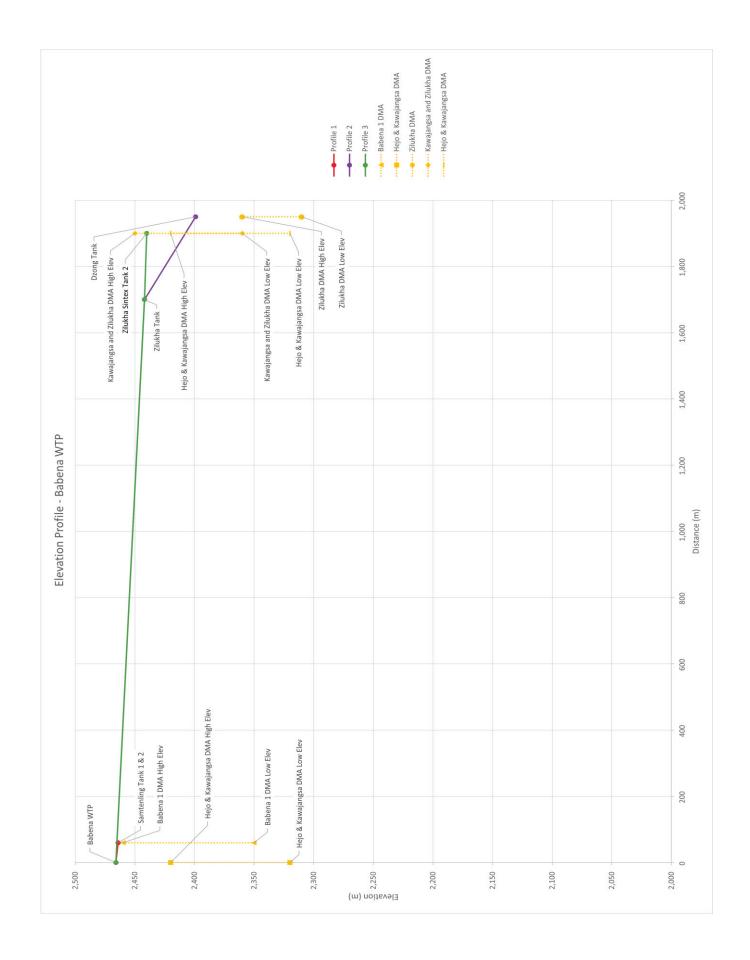
Value	Result
Storage Reservoir Name	YHS Tank 2
Downstream Storage Reservoir(s)	Changjiji tank 1; Changjiji tank 2; Changjiji tank 3
Adjacent Reservoir(s)	YHS Tank 1
Downstream DMA(s)	YHS Residents; Changdelo; Changjiji Tank 1, 2 and 3 which serves Changiji Residents
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	200
Number of Outlet Pipes	3
Diameter of Outlet Pipes (mm)	150; 100; 80
Operations	24hour
Top Water Elevation (m)	2406.5
Bottom Water Elevation (m)	2403
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	Zincalume


Storage Reservoir – Zilukha Sintex Tank 1

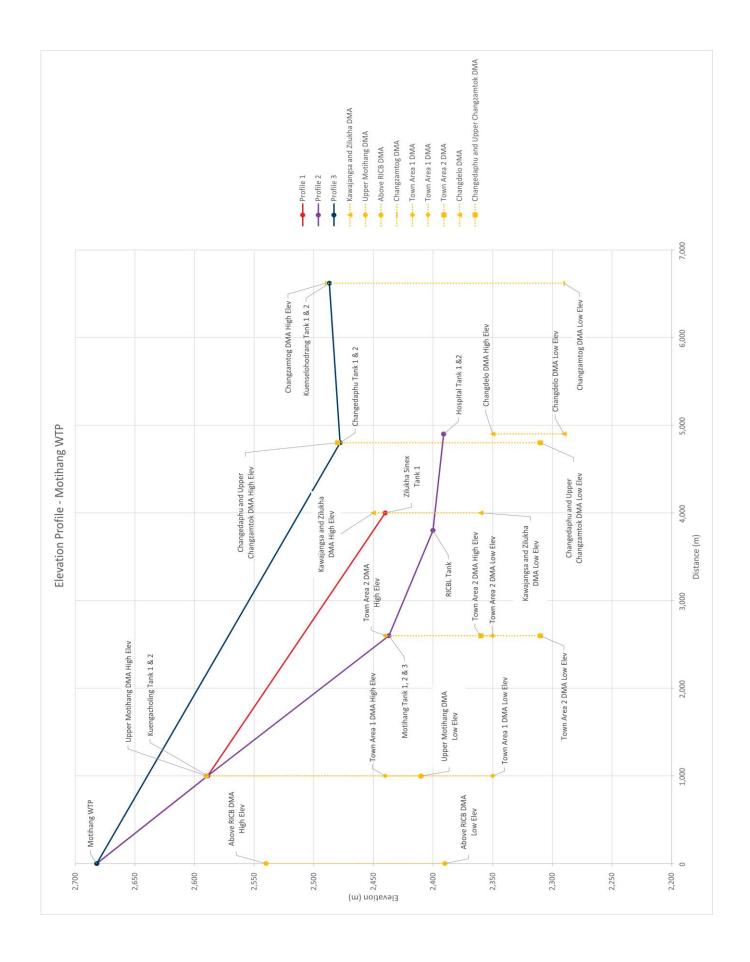
Value	Result
Storage Reservoir Name	Zilukha Sintex Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Zilukha Sintex Tank 2
Downstream DMA(s)	Kawajangsa and Zilukha
WTP Supplying Storage Reservoir	Motihang WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	80
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	100
Operations	Not provided
Top Water Elevation (m)	2459.5
Bottom Water Elevation (m)	2456
Storage Reservoir Volume (m ³)	6
Storage Reservoir Material	nan


Storage Reservoir – Zilukha Sintex Tank 2

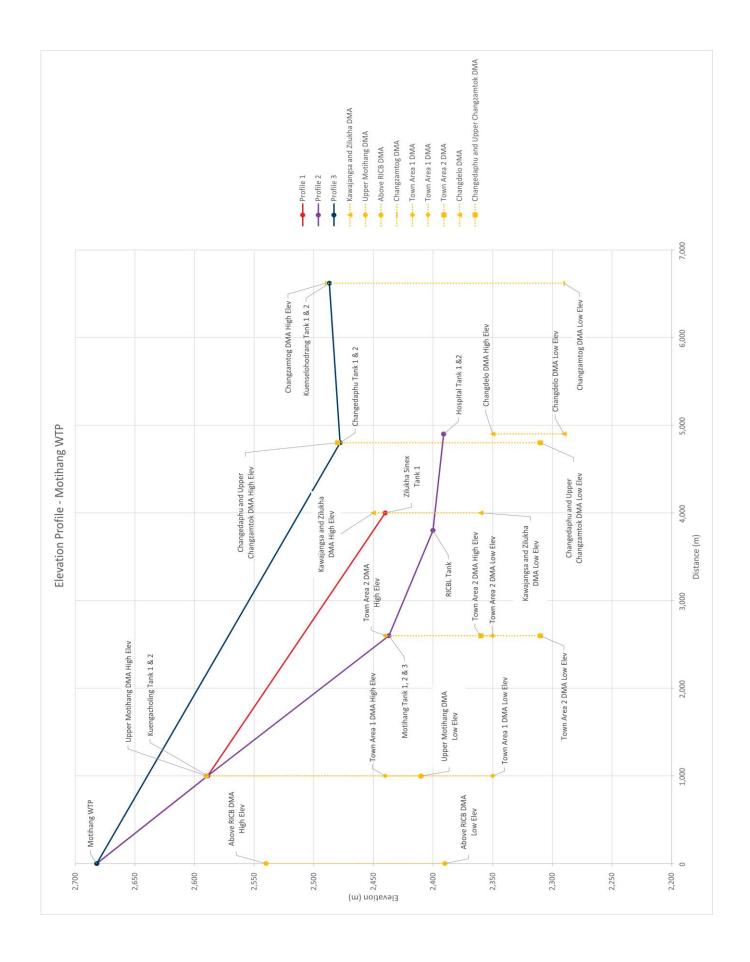
Value	Result
Storage Reservoir Name	Zilukha Sintex Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Zilukha Sintex Tank 1
Downstream DMA(s)	Kawajangsa and Zilukha
WTP Supplying Storage Reservoir	Babena WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	1
Diameter of Outlet Pipes (mm)	80
Operations	Not provided
Top Water Elevation (m)	2443.5
Bottom Water Elevation (m)	2440
Storage Reservoir Volume (m ³)	6
Storage Reservoir Material	nan


Storage Reservoir - Changbangdu Tank 1

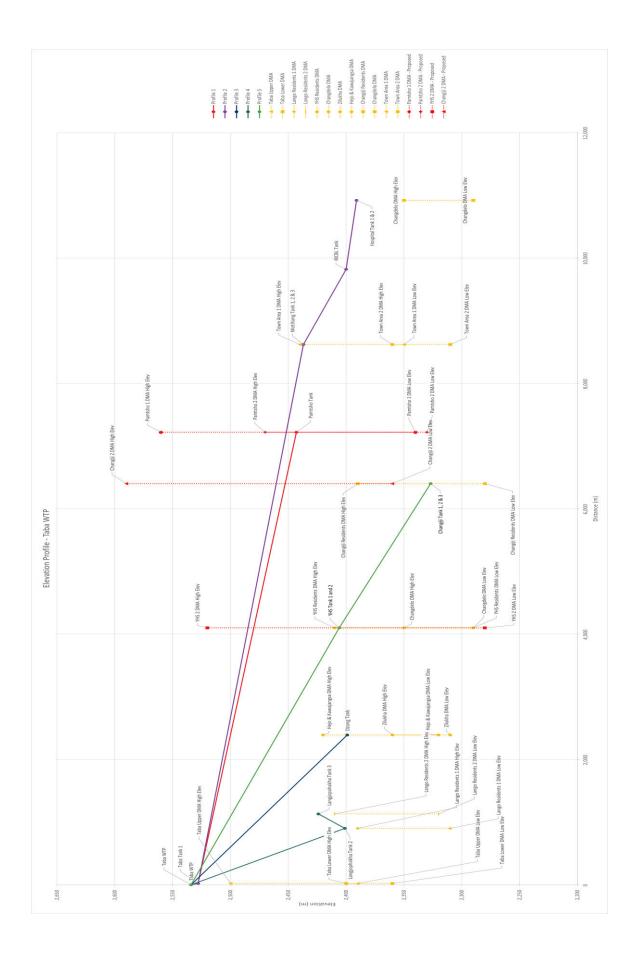
Value	Result
Storage Reservoir Name	Changbangdu Tank 1
Downstream Storage Reservoir(s)	Changbangdu Tank 2
Adjacent Reservoir(s)	Changbangdu Tank 2 and 3
Downstream DMA(s)	Bangdu Residents; Changbangdu Tank 2 which services Bangdu Area (Left)
WTP Supplying Storage Reservoir	Chamgang Old WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	200
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	100; 100
Operations	24hour
Top Water Elevation (m)	2435.5
Bottom Water Elevation (m)	2432
Storage Reservoir Volume (m ³)	270
Storage Reservoir Material	RCC_circular


Storage Reservoir – Zilukha Tank

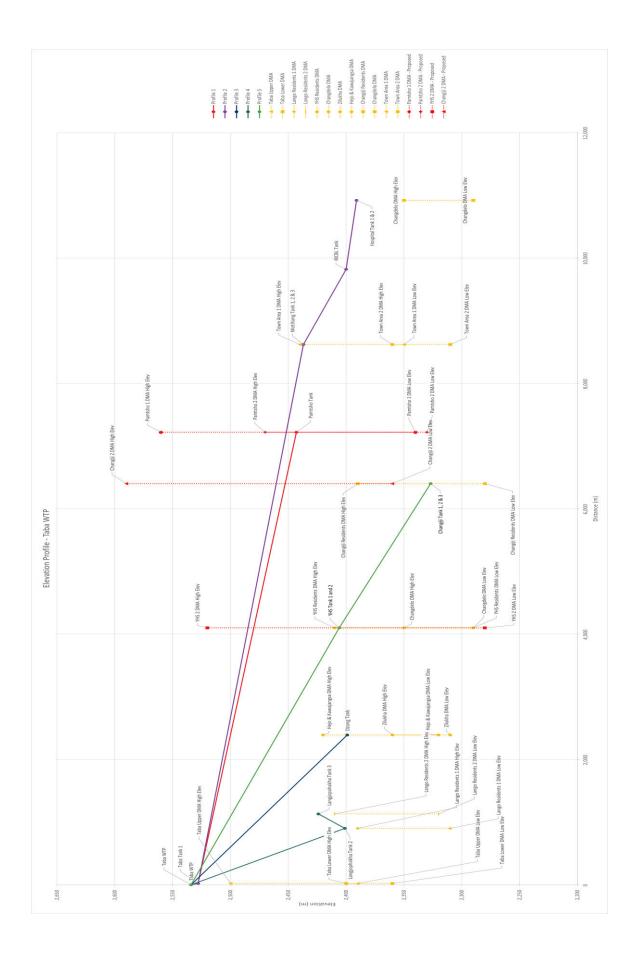
Value	Result
Storage Reservoir Name	Zilukha Tank
Downstream Storage Reservoir(s)	Zilukha_Sintex_tank 2; Dzong Tank
Adjacent Reservoir(s)	None
Downstream DMA(s)	Zilukha Sintex Tank 2 which supplies Kawajangsa and Zilukha; Dzong Tank which supplies Zilukha and Hejo and Kawajangsa
WTP Supplying Storage Reservoir	Babena WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	110
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	150; 75
Operations	Not provided
Top Water Elevation (m)	2445.5
Bottom Water Elevation (m)	2442
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular


Storage Reservoir - Changedaphu Tank 1

Value	Result						
Storage Reservoir Name	Changedaphu Tank 1						
Downstream Storage Reservoir(s)	None						
Adjacent Reservoir(s)	Changedaphu Tank 2						
Downstream DMA(s)	Changedaphu and Upper Changzamtok; Chamgzamtog						
WTP Supplying Storage Reservoir	Motihang WTP						
Number of Inlet Pipes	1						
Diameter of Inlet Pipes (mm)	100						
Number of Outlet Pipes	1						
Diameter of Outlet Pipes (mm)	100						
Operations	6am-9am and 6pm-9pm						
Top Water Elevation (m)	2482.5						
Bottom Water Elevation (m)	2479						
Storage Reservoir Volume (m ³)	230						
Storage Reservoir Material	RCC_circular						


Storage Reservoir - Changedaphu Tank 2

Value	Result
Storage Reservoir Name	Changedaphu Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Changedaphu Tank 1
Downstream DMA(s)	Changedaphu and Upper Changzamtok; Chamgzamtog
WTP Supplying Storage Reservoir	Motihang WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	100
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	150; 100
Operations	6am-9am and 6pm-9pm
Top Water Elevation (m)	2481.5
Bottom Water Elevation (m)	2478
Storage Reservoir Volume (m ³)	100
Storage Reservoir Material	RCC_circular


Storage Reservoir – Changiji Tank 2

Value	Result
Storage Reservoir Name	Changiji Tank 2
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Changiji Tank 1 and 3
Downstream DMA(s)	Changiji Residents
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	150; 100
Operations	24hour
Top Water Elevation (m)	2330.5
Bottom Water Elevation (m)	2327
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

Storage Reservoir – Changiji Tank 1

Value	Result
Storage Reservoir Name	Changiji Tank 1
Downstream Storage Reservoir(s)	None
Adjacent Reservoir(s)	Changiji Tank 2 and 3
Downstream DMA(s)	Changiji Residents
WTP Supplying Storage Reservoir	Taba WTP
Number of Inlet Pipes	1
Diameter of Inlet Pipes (mm)	150
Number of Outlet Pipes	2
Diameter of Outlet Pipes (mm)	150; 100
Operations	24hour
Top Water Elevation (m)	2330.5
Bottom Water Elevation (m)	2327
Storage Reservoir Volume (m ³)	230
Storage Reservoir Material	RCC_circular

Appendix D

Water Supply Hydraulic Modelling Results

Job Title	Thimphu Water Services Masterplan
Job Number	289551
Made By	LZ
Checked By	IF
Date	26/05/2023
Description of spreadsheet	Hydraulic modelling outputs
Sheet Number prefix	Sheet number prefix
Member/Location	Member/Location
Drawing Reference	Drawing reference
Filename	Filename

Contents of Spreadsheet

Sheet	Description	
Cover		
Notes		
Calc(P)		
Calc(L)		
Calc(side)		
Sheet6		
Sheet7		

Authorisation of latest version

Type and method of check

Signatures & dates:

Made by Checked

Revisions Curren		t Revision		
Rev.	Date	Made by	Checked	Description

					Exsiting M	odel: Node pressure			1		
Rev.				щ	ю	Label	X (m)	Y (m)	Elevation (m)	Demand (L/s)	Pressure (m H2O)
	er	'_	ø	23 Chd.	63 67	J-11 J-13	764,118.88	3,037,859.93 3,037,477.71	2,306.25 2,379.98	0	257.65
	qunu	catior	erenc	26/05/2023	70 72	Olakha 2_PC2 J-15	764,091.47 764,722.36	3,038,212.79 3,036,334.19	2,393.29 2,757.00	2.73 0	171.21 108.53
Sheet No.	Sheet number	MemBBflixocation	Drawing reference	Date 26/	78	J-27	760,439.73 763,086.87	3,037,252.66 3,039,176.30	2,475.54 2,367.53	0	183.49 191.41
S	.,	Mem	Draw	ă	128 131		761,548.90 761,528.39 763,053.53	3,039,496.87 3,039,306.87 3,039,189.09	2,390.52 2,430.19 2,358.75	0 13.59	169.88 130.13 5.21
				Ы		Olakha1a	763,062.80	3,039,176.63 3,038,050.91	2,359.47 2,304.86	13.59	4.5
No.	289551	Member/Location	. Ref.	ĥ	143 146	J-37 J-38	761,385.95	3,036,513.60 3,033,510.97	2,288.11 2,640.00	0	370.54 19.36
Job No.	28	Men	Dig	Made	151	J-41	760,566.79 760,444.69	3,048,382.11 3,048,527.23	2,500.38 2,523.06	0	20.05 53.99
						J-43 J-44 J-45	760,458.67 758,318.59 760,218.30	3,041,995.88	2,515.64 2,590.85 2,479.05	0	5.24 251.57 271.33
					179	J-46	759,066.26 759,642.77	3,044,620.53	2,465.35	0	6.61 370.82
					200	J-50 J-51		3,044,993.07	2,361.50 2,423.13	0	178.21 29.3
					214	J-52 Upper Taba	761,148.08	3,045,755.26	2,399.27 2,404.68	0	48.43
					218 224 226	J-54 J-55 J-56	761,780.43 762,557.00 761,786.39	3,041,091.48 3,039,586.51 3,041,087.77	2,402.77 2,327.92 2,402.80	0	40.36 1.39 2.19
					227	Changdelo_PC1 J-58	760,679.73	3,040,887.03	2,351.08	0	53.8
			_		244		760,087.09 762,151.61	3,041,513.77 3,039,520.56	2,371.39 2,279.98	0.01	5.26 48.92
			terpla		249	Bhutan Hospital J-63	762,631.99 759,655.78	3,039,641.73 3,041,927.41	2,362.94 2,436.39	0	41.97 84.08
			sMas		254 257 269	J-64 J-65 J-66	760,076.99 760,523.56 760,331.89	3,041,131.75 3,040,395.63 3,042,137.06	2,396.54 2,391.35 2,359.01	0	15.19 9.38 21.76
			ervice			J-67	762,568.91 762,337.84	3,039,091.00	2,291.44 2,289.19	0	72.39
			Thimphu Water Services Masterplar		279 281	J-69 J-70	762,913.17 763,384.81	3,038,694.17 3,038,634.82	2,279.63 2,343.90	0	84.17 20.04
	~		hu W a		283 286	J-71 Dangrina_PC1	762,706.39 760,802.11	3,047,749.34	2,316.26 2,425.87	0 9.78	47.62 42.53
	Ë		Thimpi		290	Dangrina proposed Satellite Town_PC1	760,513.32	3,047,981.72	2,514.90 2,380.91 2,402.46	0.61	6.09 11.54 126.68
	2			-	294	Lower Taba_PC1 Lango Residents 1 Langho Res1_PC1	760,912.88 761,024.89 760,484.04	3,043,672.81	2,402.46 2,384.74 2,314.94	10.1 6.84 0	126.68 16.25 111.44
			Job Title	Calculation	300	YHS Residents Changiji Residents De	761,605.40	3,041,158.13 3,039,937.83	2,387.08 2,310.59	6.16 16.65	16.02 13.08
					304 307	Above Old Highway D J-82	762,388.78 763,000.28	3,036,764.87 3,037,793.73	2,385.80 2,308.10	9.78 0	4.96 89.53
						Bebesa Left Demand : Bebesa Left_PC1	763,192.43 761,850.25	3,038,106.06 3,037,311.43	2,294.68 2,264.80	16.19 8.1	11.37 41.33
					318	J-85 Simtokha E4 Demand Simtoka Upper 1_PC1	763,819.94 763,896.40 763,331.45	3,036,963.52 3,037,056.79 3,037,349.05	2,587.49 2,559.08 2,458.12	0 2.47 1.37	273.79 302.11 62.53
					322	Simtokha Upper 1_PC Lango Res1_PC2	762,708.09	3,037,403.33 3,043,598.41	2,308.64	1.37	211.54 14.37
					331 334	Bangdu Residents_P0 J-92	761,578.82 761,340.61	3,039,158.04 3,039,430.74	2,428.10 2,488.86	1.7 0	3.92 -0.31
					349 351	Hejo& Kawajangsa_P	761,399.49 760,407.82	3,039,558.15 3,043,922.64	2,427.70 2,316.24	10.9 2.63	54.46 82.58
					361	J-97 J-98 J-100	761,054.17 760,396.89 760,450.15	3,044,126.19 3,044,941.82 3,044,936.23	2,377.18 2,356.19 2,353.70	0	85.51 3.79 47.2
					380	J-100 J-101 J-102	760,379.99 760,386.72	3,044,955.61	2,356.68 2,357.32	0	3.17 46.65
					399 404	J-104 J-105	760,553.00 760,054.26	3,040,398.73 3,041,482.39	2,387.11 2,370.63	0	5.98 3.26
					422	J-108 Taba / Dotena		3,045,679.81	2,583.62 2,533.35	0	-4.8 6.7
					424	J-112 Pamtsho_PC1 J-117	760,297.08 760,303.92 759,745.29	3,046,710.20	2,360.81 2,564.66 2,451.02	0	166.01 -119.42
					439	J-119 Hejo & Kawajangsa_F	759,776.42 760,046.89	3,043,709.89 3,043,705.43 3,044,313.59	2,436.35 2,417.12	0	-1.33 13.27 32.27
					445	Kawajangsa and Ziluk	759,590.95	3,043,424.69 3,042,529.17	2,451.37 2,446.23	5.45 0	-9.29 93.98
					452	Town Area 1 Demand Norzin Wog_PC1	760,434.23	3,042,599.10 3,042,234.65	2,393.55 2,351.90	6.41 9.32	140.02 4.9
					454	J-125 Changzamtog Deman	761,264.69 761,272.04 760,897.74	3,040,131.04	2,305.76 2,305.95 2,382.90	0 10.9 11	22.76 21.72 92.87
					460 463 467	Changedaphu & UCha Changbangdu - BHs Jungshina	761,353.45 760,376.27		2,382.90 2,488.98 2,357.77	0	-0.23 2.21
					468	Ziluka_PC1 J-136	760,603.51		2,314.12 2,430.89	0.29	86.67
					473 475	Town Area 1_PC1 Town Area 2a	760,375.62 760,492.18	3,042,631.67 3,041,462.19	2,347.52 2,335.14	6.41 3.88	162.55 36.58
						Town Area 2_PC2 J-140	760,924.41 759,676.62		2,313.18 2,432.94		38.9 5.9
					482	Town Area 2c Upper Mothiang Dema J-143	760,287.79 758,872.79 759,923.06	3,041,988.83	2,356.47 2,522.41 2,453.51	3.88 25.81 0	78.67 -21.1 316.66
					487	Above RICB Demand Above RICB Tank a	759,923.06 759,943.07 760,062.17	3,040,768.73 3,041,105.88	2,452.84 2,399.98	1.39	317.31 2.01
					491 492	J-146 Changedaphu & UCha	760,243.18 761,620.86	3,040,089.64 3,040,032.25	2,477.61 2,287.55	0	3.25 186.01
					497	J-148 Changdelo_PC2 Changdelo_Demond 2	760,556.76 761,335.27 760,659.45	3,040,397.66 3,040,377.10	2,387.04 2,290.78	0 5.805	5.75 93.5
					501	Changdelo Demand 2 J-151 Bangdu Area left_PC1	760,659.45 761,619.09 762,090.51	3,040,786.44 3,040,392.20 3,038,962.40	2,353.19 2,314.22 2,405.02	5.805 0 8.16	28.58 90.59 -16.87
					516 518	Bebesa Right_PC1 J-157	761,598.56 761,375.13	3,036,529.10	2,329.80 2,305.19	5.23	3.56 353.5
					521 532	Gangchey Nyezergan J-160	760,866.82 760,847.04	3,036,196.70 3,039,952.85	2,252.43 2,410.33	0	406.15 67.09
					575	J-162 Bebena 1_PC1 Bebena 1a Demand	763,275.08 760,350.72 759,260.84	3,044,483.92	2,644.00 2,345.83 2,441.47	0.01	15.02 120.23 24.08
					601		759,260.84 757,564.56 757,550.83	3,042,096.37	2,441.47 2,675.00 2,682.00	0	24.08 193.83 187.61
					624	J-172 J-173		3,033,559.92	2,915.00 2,792.00	0	-3.68
					651 750	Simtoka Upper 2b_PC J-176	763,016.48 761,147.43	3,036,669.73 3,043,624.77	2,537.68 2,399.49	4.2 0	19.37 1.77
					755 766	J-177 J-178	760,395.40 760,123.92	3,044,933.85 3,048,687.37	2,356.20 2,573.00	0	47.76 6.84
						Luding Demand 1 Lubding Demand 2 J-182	763,846.55 763,921.25 761,599.65	3,039,059.53 3,038,737.26 3,040,713.58	2,634.50 2,513.27 2,396.84	0	10.48 5.72 -7.06
					797 804 807	J-182 J-185 Rama _PC2	761,599.65 761,061.79 759,847.66		2,396.84 2,290.16 2,244.00	0	-7.06 368.5 414.56
					809	Town Area 1.1 J-188	760,491.21 762,165.23	3,041,163.14	2,357.57 2,498.29	6.41 0	64.95 17.01
					815 818	J-189 Changdelo 1a	761,100.29 761,184.30	3,040,938.84 3,040,535.49	2,299.88 2,305.04	0	104.9 99.75
					822 825	J-191 Olakha 2_PC1	764,380.46	3,037,879.71	2,346.00	0	218.56 256.61
						J-193 Rama_PC1 J-195	759,800.25 759,218.61 760,642.46	3,036,266.35	2,274.00 2,381.00 2,463.08	0	384.63 277.84 195.93

	Label	ne hydraul Length (Scaled) (m)	Diameter (mm)	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
321	P-11(1) P-110 P-111	2,096.00 411.00 702.00	350.00 100.00 100.00	46.13 1.37 1.37	0.48 0.17 0.17	0.839
639 845	P-6(1) P-105(1)	1,210.00 149.00	150.00 100.00	10.00 9.78	0.57	3.067
838	P-176 P-218 P-12(1)	95.00 652.00 1,871.00	100.00 100.00 200.00	5.23 5.23 20.00	0.67 0.67 0.64	6.653 6.654 2.726
139 69	P-26(1) P-11(2)	895.00	250.00 250.00 350.00	23.40 43.40	0.48	1.23
316	P-13(1) P-4(2)(1)	852.00 1,112.00	150.00 200.00	2.73 22.97	0.15	
652	P-14(1) P-193 P-96	1,664.00 199.00 684.00	150.00 80.00 100.00	20.00 4.20 9.78	1.13 0.84 1.25	13.143
576 675	P-46(1) P-12(2)(1)	1,807.00 9.00	160.00 200.00	0.01 10.00	0.32	0.748
135	P-24(1) P-30	17.00	200.00	10.00 13.59	0.32	1.336
332	P-31 P-115 P-114(1)	13.00 211.00 757.00	200.00 100.00 100.00	13.59 1.70 10.00	0.43 0.22 1.27	1.334 0.83 22.1
132 663	P-28 P-27(1)	216.00 3.00	200.00 250.00	10.00 10.00	0.32	0.755
666	P-243 P-29(1) P-92(1)(1)	406.00 3 139	100.00 250 160	0.00 10 0.002	0.2	0.291
282	P-92(1)(1) P-95 P-32(1)(1)	664	200 250	0.002	0.07	0.034
868 805	P-26(2)(1) P-15(2)(1)	669 614	250 150	20.001 0.003	0.41	0.919
558	P-33(1) P-184 P-192	3,664	250 250	0.004	0	
289	P-192 P-97 P-202	87 94 36	250 150 150	-50.077 0.001 10	1.02 0.57	0
775 778	P-35(1) P-18(1)	1,137 966	80 150	0.5	0.1	0.255 3.066
873	P-98 P-226	81 188	150 90	0.61	0.03	0
161	P-16(2)(1) P-17(2) P-43	28 136 3,877	150 150 100	16.2 10 10.392	0.92 0.57 1.32	3.066
723	P-39(1) P-38(1)	19	100	11.85	1.51	30.266
686 720	P-42(1) P-41(1)	9 15	100 100	10 10	1.27 1.27	22.094 22.089
533	P-214 P-117(1) P-45(1)	23 807 240	100 100 160	4.885 4.116 11.57	0.62 0.52 0.58	5.864 4.27 2.934
435	P-45(1) P-47(1) P-44(1)	1,700	110	9.69	1.02	
742 736	P-20(2)(1) P-144(1)	11 207	150 75	3.53 5	0.2	0.46 24.858
713	P-49(1) P-50(1)	8		10	0.57	3.079 3.054
537	P-51(1) P-181 P-81(1)	13 23 407	150 100 150	10 5.196 30	0.57 0.66 1.7	3.064 6.573 23.458
352 375	P-124 P-52(1)(1)(1,081	100	2.63	0.33	1.863
219	P-151(1) P-62	16 3,403	100 200	1.097 20	0.14	2.726
213	P-57(1) P-60 P-59(1)	125 238 3	150 100 100	31.248 21.248 10	1.77 2.71 1.27	89.244
295	P-100 P-113	150 105	150	6.84	0.39	1.518
425	P-102 P-77(1)	969 1,505	63 200	0 16.41	0.52	1.89
885	P-53(1) P-99(1) P-61(1)	4 768 332	200 200 150	-10 10.1 7.61	0.32	0.75
695 698	P-63(1) P-64(1)	4	150	10	0.57	3.058
248 924	P-76 P-239	6 50	150 80	6.162 0	0.35	1.244 0
241	P-65(1) P-71 P-72	444 6 8	150 100 100	36.826 15.293 13.352	2.08 1.95 1.7	
243	P-73 P-103	20		8.181	1.04	15.241
926	P-75(1) P-66(1)(1)	828 732	100	0.001	0	0
238	P-74 P-68 P-69	692 16 22	150 100 100	0.01 -6.773 -5.716	0.86	10.742
240	P-70 P-104	30	100	-4.778	0.61	5.629
264	P-67(1) P-86	2,043 27	100	0.616 22.519	2.87	99.378
396	P-87 P-135 P-136	40 29 19	100 80 80	18.216 2.092 2.603	2.32 0.42 0.52	
476 707	P-159 P-78(1)	577	100	3.88	0.49	3.828 0.735
701	P-82 P-85(1)	995 13		20 10		
689	P-164 P-83(1) P-84(1)	9 7 12	100 100 100	1 10 10	0.13 1.27 1.27	22.116
495	P-166 P-167	23	100	6.061 5.549	0.77	8.741
273 704	P-91 P-90(1)	801 8	250 100	51.018 10	1.04	5.209 22.104
912	P-154 P-160(1) P-93	164 359 318	100	9.32 3.88 0.001	1.19 0.49 0	3.828
280	P-94 P-92(2)	529 239	110	0.001	0	0
312 840	P-107 P-108(1)	505 986	200 200	16.19 8.1	0.26	0.511
858	P-106(1) P-32(2)(1) P-109	8 651 121		10 -6.6 2.47	0.57	0.118
654 340	P-4(2)(2)(1 P-118	121 605 19	150 150 100	2.47 20.5 -6.884	0.14 1.16 0.88	11.589
350 359	P-123 P-56(2)	182 666	100 200	10.9 51.248	1.39 1.63	25.925 15.574
360 363	P-126 P-52(2) P-127	2,393 35	150 150	31.619 0	1.79	0
378	P-127 P-129 P-52(1)(2)	18 14 15	100 100 100	0	0	
377 379	P-128 P-130	39 40	100 100	0	0	0
376 387	P-52(1)(1)(P-89(2)(1)(39 12	100 250	0 22.654	0.46	0 1.149
	P-131 P-133	15 13	250 250 250	22.652 22.654 61.018	0.46	1.152
	P-89(2)(2)	3,214				7.256

http://lang.shurqoint.com/hams/by/28955100.Data and Documents Library/4. Internal Project Data/4.04 Reports/Masterplan Reports (Final Delivenable)/Appendis

839	J-198	762 294 91	3,037,371.34	2.280.85	0	25.5
	Bebesa Left PC2		3.037.187.46	2.311.27	0	-4.7
	J-200		3,036,884.43	2,377.91	0	16.8
	Above Old Highway D	761 726 57	3 037 092 61	2.264.04	0	130.5
	Serbithang PC1		3.036.462.73	2.345.02	0	13.
	J-204	762.779.65	3,034,747.27	2.519.65	0	70.8
855	Serbithang PC2		3.035.017.70	2.634.70	0	-4
	J-206	762.632.60	3.037.430.70	2.305.97	0	91.7
860	Simtokha Upper 2b P	762,637.10	3,037,436.71	2,305.16	0	92.5
	J-208		3,039,314.24	2,344.38	0	19.5
865	J-209	763.050.22	3.039.335.70	2.367.75	0	-3.7
867	J-210	762.978.88	3.038.534.41	2.280.10	0	282.0
870	Olakha 1 PC1	762.916.19	3.038.370.99	2.274.50	0	287.6
872	Satellite Town PC2	761.574.68	3.048.215.92	2.393.49	0	-1.0
874	Pamtsho PC2	760.513.38	3.045.930.64	2.338.45	0	106.3
	J-214	760.382.60	3,046,047.78	2,359.60	0	85.2
879	Pamtsho 2 PC1		3.045.476.93	2.331.83	0	112.9
882	Pamtsho PC2	759,907,65	3,045,359.03	2.473.73	0	-28.6
	J-218		3,045,813.00	2.403.78	0	125.3
887	Lower Taba PC2		3.046.292.66	2.360.23	0	168.8
	J-220	761.567.35	3.045.903.46	2.498.77	0	30.5
892	Upper Taba PC	761,151.31	3,046,515.51	2,391.94	0	137.1
	J-222		3.043.585.34	2.406.91	0	42.3
897	Lang 2 PC1	761.192.29	3.043.601.97	2,407,48	0	41.7
		759.867.39	3,043,014.07	2.416.91	0	123.2
902	Kawajangsa and Ziluk	760.038.10	3.043.112.02	2.357.72	0	182.3
	J-226		3,041,718.68	2,410,42	0	1
907	Upper Motihang PC		3,041,716.77	2.412.82	0	16.6
	Upper Motihang PC2			2.594.83	0	-15.9
	J-229		3.041.787.46	2.364.11	0	-5.4
914	Town Area 2 PC1	760.304.24	3.041.798.22	2.363.23	0	-4
916	Norzin Wog PC2	761,111.67	3,041,238.63	2,298.01	0	73.6
918	J-232	762,581.84	3,039,665.86	2,361.98	0	42.9
921	Changiji Res PC2	762,630.16	3,039,730.41	2,394.36	0	10.6
923	YHS Res PC1	761.805.84	3,041,140.16	2,408.97	0	-3.9
	J-235		3.040.950.54	2.301.85	0	102.9
928	YHS Res_PC2	761.201.33	3.040.866.96	2.293.33	0	111.4
	J-237	761.164.94	3,040,228.87	2,315.68	0	15.7
			3,040,162.27	2,311.94	0	19.4
	Changedaphu & UCha			2.493.83	1.69	-7.0
	Bangdu Residents PC			2,358.47	0	201.8
	J-241		3,036,390.81	2,354.33	0	4.0
	J-242		3.036.399.08	2.371.99	0	-13.6

402	P-138 P-139 P-137(1)	19 25 30	80 80 80	2.499 2.196 4.695	0.5	5.02 3.95 16.15
411	P-137(2) P-141	1,490	80 80	4.695	0.93	16.15
417	P-142 P-143	57 54	80 80	-19.675	3.91	229.48
483 910	P-162 P-235	606 235	100	25.81 0.001	3.29	127.94
358	P-54 P-56(1) P-146	1,516 2,036 869	200 200 150	0 82.867 0	0 2.64	37.92
877	P-227(1) P-229	475	100	0.001	0	
760	P-77(2)(1) P-145(1)	3,380 1,179	200 150	16.41 0	0.52	1.8
733	P-148(1) P-47(2)(1) P-149	31 25	150 150	6.16 3.53	0.35	0.44
729	P-149 P-148(2)(1) P-150	755 255 142	150 150 150	2.63 3.53 5.45	0.15	0.25
450 451	P-152 P-153	228	80	6.41	1.28	28.75
931	P-155 P-67(2)(1)	33 122	100 100	10.9 -10.284	1.39 1.31	25.92 23.27
341 381 469	P-119 P-89(1) P-157	22 15 1.151	100 250 100	-6.884 67.96 -0.29	0.88 1.38 0.04	11.0 8.86 0.03
472	P-77(2)(2) P-158	1,151	200	-0.29 10 6.41	0.32	0.75
481	P-237 P-161	1,398 928	100 100	0.001 3.88	0.49	3.82
810	P-182 P-211	24	100	-5.094	0.65	6.33 9.69
488	P-40(2) P-163 P-165	968 24 1,894	100 100 150	9.609 1.39 11	0.18	20.52 0.56 3.65
536 498	P-180 P-168	1,033	100	-6.115 5.805	0.78	8.89
919	P-169 P-75(2)(1)	458 1,258	80 100	5.805 0.001	1.15 0	23.93
520	P-173 P-33(2) P-177	124 187 526	100 200 100	8.16 0.003 0.001	1.04 0	15.16
900	P-177 P-151(2)(1) P-117(2)	526 845 993	100	0.001 1.097 -6.884	0.06	0.05
535 627	P-179 P-190	60 61	100	42.971	1.4	26.36
853 769	P-10(2)(1)(P-201	1,370 19	150 150	50.073 16.2	2.83 0.92	60.57 7.49
754	P-200 P-198 P-196	21 13 46	400 400 250	92.867 67.96	0.74	1.60
603	P-196 P-37(2)(2) P-187	46 885 26	250 150 150	16.75 34.092 -34.092	0.34 1.93 1.93	0.6 29.72 29.72
189	P-48 P-40(1)	2,589	150 100	30.001 10.999	1.7	23.45
718	P-195 P-4(1)(2)(2	10 4,055	400 200	-75.092 42.971	0.6 1.37	1.06 11.23
683	P-21(2)(2)(P-194	1,942 252 5	250 250	-75.2	1.53	10.68
640 643 646	P-6(2) P-106(2) P-10(2)(2)	5	150 150 150	10 10 19.6	0.57	3.05 3.06 10.66
655	P-4(2)(2)(2 P-14(2)	5	150 150	20.5	1.16	11.61
664	P-114(2) P-27(2)	3	100 250	10 10	1.27 0.2	22.08 0.28
667 676 679	P-29(2) P-12(2)(2)	3 5 5	250 200 200	10 10 10	0.2	0.23
682	P-24(2) P-21(2)(2)(P-32(1)(2)	4	200 250 250	75.2	0.32 1.53 0.07	0.7
687 690	P-42(2) P-83(2)	6	100 100	10 10	1.27	22.09 22.11
693 696	P-84(2) P-63(2)	7	100	10	1.27	22. 3.05
702	P-64(2) P-85(2) P-90(2)	7 10 8	150 100 100	10 10 10	0.57	3.06 22.10 22.10
708	P-78(2) P-49(2)	8	200	10	0.32	0.75
714 717	P-50(2) P-51(2)	6	150 150	10 10	0.57	3.07 3.07
724	P-41(2) P-39(2)	8	100	10 11.85 11.85	1.27	22.09
730	P-38(2) P-148(2)(2) P-47(2)(2)	9 9 13	100 150 150	11.85 3.53 3.53	1.51 0.2 0.2	30.27 0.44 0.45
737	P-144(2) P-44(2)	4	75	3.53	1.13	24.8
743 746	P-20(2)(2) P-59(2)	7	150 100	3.53 10	0.2	0.45
753 757	P-197 P-116(1)(1)	1,847	150 150	6.941 6.941	0.39	1.56
761	P-199 P-145(2) P-53(2)	9 20 7	150 150 200	-6.941 0 -10	0.39	0.72
768 773	P-16(1)(2)(P-16(2)(2)	360	150 150	16.2 16.2	0.92	7.49 7.51
779	P-35(2) P-18(2)	5	80 150	0.5	0.1	0.24
793	P-203 P-204(1) P-205	29 324 11	100 80 100	0.001 2 0.001	0.4	3.32
790 791	P-206(1) P-206(2)	933	100	10	1.27	22. 22.09
794 799	P-204(2) P-65(2)	6 1,763	80 150	2 36.826	0.4	3.30 34.29
833	P-210(1) P-15(2)(2)(1,630 710	100 100	0.001	0	10.66
940	P-10(2)(1)(P-212(1) P-66(2)	1,199 750 441	150 100 150	19.6 30.473 0	1.11 3.88 0	10.66 174.02
819 824	P-213 P-13(2)	425 582	100 150	0	0 0.15	0.27
826 829	P-215 P-210(2)	239 246	152.4 152.4	0.001	0	
834	P-216 P-15(2)(2)(P-217	688 280	152.4 100 80	0.001	0	
841 843	P-108(2) P-219	1,839 559 287	200 200	0.001 8.1 0.001	0.26	0.51
846 848	P-105(2) P-220	192 736	100 100	9.78 0	1.25 0	21.20
856	P-10(2)(1)(P-222	1,506 363	150 100	50.073 0	2.83 0	60.57
861	P-32(2)(2) P-223	926 8	250 100	-6.6 0	0.13	0.11
866	P-92(1)(2) P-224 P-26(2)(2)	455 52 2,133	160 152.4 250	0.001 0.001 20	0	0.91
871 878	P-225 P-227(2)	416 603	90 152.4	0.001	0.41	
880 886	Pamtsho2_ P-99(2)	824 17	152.4 200	0.001	0.32	0.77
888	P-230	698	90 150	0	0.43	

893	P-231	1,007	90	0	0	0
896	P-57(2)	61	150	31.248	1.77	25.297
898	P-232	17	152.4	0	0	0
901	P-151(2)(2)	578	150	1.097	0.06	0.051
903	P-233	197	90	0	0	0
906	P-81(2)	754	150	30	1.7	23.458
908	P-234	16	90	0	0	0
913	P-160(2)	1,690	100	3.88	0.49	3.827
915	P-236	31	90	0	0	0
920	P-75(2)(2)	56	100	0	0	0
922	P-238	81	80	0	0	0
927	P-66(1)(2)	79	150	0.001	0	C
929	P-240	88	150	0.001	0	0
932	P-67(2)(2)	1,944	100	-10.284	1.31	23.276
934	P-241	74	100	0.001	0	0
946	P-245	81	80	-1.69	0.34	2.435
941	P-212(2)	116	100	30.472	3.88	174.014
	P-244	9	90	0	0	C
944	P-221(2)	129	90	0	0	C

https://acpstanepoint.com/hams/pi/2055100/Data and Documents Library/4. Internal Project Data/4.24 Reports/Masterptian Reports (Final Deliverable)/Appendix/Appendi

			щ	ID	l abel	X (m)	Y (m)	Elevation	Demand	Pressure (m H2O)
		8	023 Chd	ID 63 67	Label J-11 J-13	764,994.75	Y (m) 3,037,859.93 3,037,477.71	(m) 2,306.25 2,379.98	(L/s) 0 0	(m H2O) 222.82 161.95
Sheet number	MemBGflXocation	Drawing reference	26/05/2023	70 72 78	Olakha 2_PC2 J-15 Debsi_PC1	764,722.36	3,038,212.79 3,036,334.19 3,037,252.66	2,393.29 2,757.00 2,475.54	1.12 0 2.89	148.59 -162.63 180.74
Sheet	mBGP	awing r	Date 2	115 128	J-27 J-31	763,086.87 761,550.64	3,039,176.30 3,039,496.04	2,367.53 2,390.52	0	156.57 95.61
		Dra			J-32 Olokha 1 Olakha1a	763,053.53	3,039,306.87 3,039,189.09 3,039,176.63	2,430.19 2,358.75 2,359.47	0 11.81 11.81	58.13 5.22 4.51
551	Member/Location	Ref.	py LZ	138 143	J-35 J-37	763,268.30 761,385.95	3,038,052.00 3,036,513.60	2,304.86 2,288.11	0	181.09 370.17
28955	Membe	Drg. R	Made t	146 151 155		760,566.79	3,048,382.11	2,640.00 2,500.38 2,523.06	0	19.57 20.05 53.99
				159 165	J-43 J-44	760,458.67 758,318.59	3,048,463.66 3,041,995.88	2,515.64 2,590.85	0	5.24 235.71
				171 179 188	J-45 J-46 J-48	759,066.26		2,465.35	0	37.31 6.61 370.81
				200 204	J-50 J-51	760,321.97 761,309.09	3,044,993.07 3,043,589.71	2,361.50 2,423.13	0	178.21 29.3
					J-52 Upper Taba J-54		3,043,618.75 3,045,755.26 3,041,091.48	2,399.27 2,404.68 2,402.77	0 7.91 0	48.43 122.46 40.36
				224 226	J-55 J-56	762,556.72 761,786.39	3,039,587.05 3,041,087.77	2,327.92 2,402.80	0	1.39
				227 232 233	Changdelo_PC1 J-58 J-59	762,528.51	3,039,581.26	2,351.08 2,323.98 2,371.39	0	53.8 4.94 3.62
		olan		244 246	Changjiji Demand_PC1 Bhutan Hospital	762,151.61 762,631.99	3,039,520.56 3,039,641.73	2,279.98 2,362.94	0.01	48.92 41.67
		Thimphu Water Services Masterplar		249 254 257		760,076.99	3,041,131.75	2,436.39 2,396.54 2,391.35	0	83.46 15.19 9.38
		vices N		269 275	J-66 J-67	760,331.89 762,568.91	3,042,137.06 3,039,091.00	2,359.01 2,291.44	0	17.94 72.39
		erSer			J-68 J-69 J-70	762,913.17	3,039,309.18 3,038,694.17 3,038,634.82	2,289.19 2,279.63 2,343.90	0	74.64 84.18 20.05
_		iu Wat		283	J-71 Dangrina_PC1	762,706.39	3,039,285.77 3,047,749.34	2,343.90 2,316.26 2,425.87		47.62
E	5	himph		288 290	Dangrina proposed Satellite Town_PC1	761,562.99	3,048,483.79	2,514.90 2,380.91	9.3 0.46	5.84 17.05
2			ation	294	Lower Taba_PC1 Lango Residents 1 Langho Res1_PC1	761,024.89	3,045,807.98 3,043,672.81 3,043,685.87	2,402.46 2,384.74 2,314.94	6.87 2.7 0	126.99 16.44 111.44
◄		Job Title	Calculation	300 302	YHS Residents Changiji Residents Demar	761,605.40 761,992.32	3,041,158.13 3,039,937.83	2,387.08 2,310.59	7.74	15.03 15.18
				307	Above Old Highway Dema J-82 Bebesa Left Demand 2	763,000.28 763,192.43	3,036,764.87 3,037,793.73 3,038,106.06	2,385.80 2,308.10 2,294.68	6.42 0 12.86	8.87 156.18 11.69
				313 315	Bebesa Left_PC1 J-85	761,850.25 763,819.94	3,037,311.43 3,036,963.52	2,264.80 2,587.49	6.43 0	41.6 -17.78
				320	Simtokha E4 Demand Simtoka Upper 1_PC1 Simtokha Upper 1_PC2	763,331.45	3,037,056.79 3,037,349.05 3,037,403.33	2,559.08 2,458.12 2,308.64	3.5 0.87 0.87	10.52 62.65 211.76
				325 331	Lango Res1_PC2 Bangdu Residents_PC1	761,047.61 761,578.82	3,043,598.41 3,039,158.04	2,386.85 2,428.10	0.01 2.17	14.37 3.82
				334 349 351	J-92 Changzamtog Demand 2 Hejo& Kawajangsa_PC2	761,399.49	3,039,430.31 3,039,558.15 3,043,922.64	2,488.86 2,427.70 2,316.24	8.12	-0.39 56.41 82.45
				357 361	J-97 J-98	761,054.17 760,396.89	3,044,126.19 3,044,941.82	2,377.18 2,356.19	0	85.51 3.8
					J-100 J-101 J-102	760,379.99	3,044,936.23 3,044,955.61 3,044,930.46	2,353.70 2,356.68 2,357.32	0	47.2 3.28 32.34
				399	J-104 J-105	760,553.00	3,040,398.73 3,041,482.39	2,387.11 2,370.63	0	5.98 3.26
				415 422 424	Taba / Dotena	761,474.11	3,042,032.19 3,045,679.81 3,045,020.63	2,533.35	0	-1.84 6.7 165.11
				429	J-112 Pamtsho_PC1 J-117	760,303.74 759,745.29	3,046,709.65 3,043,709.89	2,360.81 2,564.66 2,451.02	6.5 0	-82.15
				439 442	Hejo & Kawajangsa_PC1	759,776.42 760,046.89	3,043,705.43	2,436.35 2,417.12 2.451.37	0 2.72 4.17	12.89 31.87 -9.24
				447	Kawajangsa and Zilukha_ J-122 Town Area 1 Demand	759,741.74	3,042,529.17 3,042,599.10	2,446.23	0	-9.24 94.46 141.23
				452 454	Norzin Wog_PC1 J-125	760,434.23 761,264.69	3,042,234.65 3,040,163.06	2,351.90 2,305.76	16.49 0	-1.06 24.85
				460	Changzamtog Demand 1 Changedaphu & UChangz Changbangdu - BHs	760,897.74	3,040,131.04 3,039,985.82 3,039,416.84	2,305.95 2,382.90 2.488.98	8.12 23.48 0	24.17 85.29 -0.28
				467 468	Jungshina Ziluka _PC1	760,376.27 760,603.51	3,044,970.08 3,043,112.32	2,357.77 2,314.12	0.42	2.22 86.63
				470 473 475	J-136 Town Area 1_PC1 Town Area 2a	760,375.62		2,347.52	6.01	89.08 163.1 36.27
				477 479	Town Area 2_PC2 J-140	760,924.41 759,676.62	3,041,040.67 3,041,912.72	2,313.18 2,432.94	4.16 0	37.82 5.9
					Town Area 2c Upper Mothiang Demand J-143	758,872.79	3,041,682.73 3,041,988.83 3,040,755.22	2,356.47 2,522.41 2,453.51	4.16 20.29 0	78.18 9.68 112.17
				487 489	Above RICB Demand Above RICB Tank a	759,943.07 760,062.17	3,040,768.73 3,041,105.88	2,452.84 2,399.98	4.42	112.72 2.01
				492	J-146 Changedaphu & UChangz J-148	761,619.05	3,040,031.16	2,477.61 2,287.55 2,387.04	0 11 0	2.27 185.04 5.69
				497 499	Changdelo_PC2 Changdelo Demand 2	761,335.27 760,659.45	3,040,377.10 3,040,786.44	2,290.78 2,353.19	6.65 6.65	91.06 25.39
				501 510	J-151 Bangdu Area left_PC1 Bebesa Right_PC1	761,619.09 762,090.51	3,040,392.20 3,038,962.40 3,036,529.10	2,314.22 2,405.02	0 4.11	90.3 -15.52 3.85
				518 521	J-157 Gangchey Nyezergang_P	761,375.13 760,866.82	3,036,330.99 3,036,196.70	2,305.19 2,252.43	0 4.75	353.14 402.87
				532 548	J-160	763,275.08		2,644.00	0	64.4 15.49 120.23
				578 601	Bebena 1a Demand J-168	759,260.84 757,564.56	3,044,773.37 3,042,096.37	2,441.47 2,675.00	10.73 0	24.17 193.37
				605 624 632	J-172	767,183.67	3,033,559.92	2,915.00	0	187.6 -12.72 -3.04
				651 750	Simtoka Upper 2b_PC J-176	763,016.48 761,147.43	3,036,669.73 3,043,624.77	2,537.68 2,399.49	2.99 0	19.42 1.71
					J-177 J-178 Luding Demand 1	760,395.40 760,123.92			0	33.52 6.84 10.42
				785 797	Lubding Demand 2 J-182	763,921.25 761,599.65	3,038,737.26 3,040,713.58	2,513.27 2,396.84	2.63 0	5.7 -7.06
				807	J-185 Rama _PC2 Town Area 1.1	761,061.79 759,847.66	3,036,909.98 3,035,658.15	2,290.16 2,244.00 2,357.57	0 0 6.01	367.93 414 66.77
				811 815	J-188 J-189	762,165.23	3,041,163.14 3,035,991.09 3,040,938.84	2,357.57 2,498.29 2,299.88	0	66.77 127.01 104.89
				818 822	Changdelo 1a J-191	761,184.30 764,380.46	3,040,535.49 3,037,901.85	2,305.04 2,346.00	0	99.74 195.81
				827	Olakha 2_PC1 J-193 Rama_PC1	759,800.25	3,035,899.49	2,307.88 2,274.00 2,381.00	0	233.86 384.06 277.28
				832	J-195 Debsi_PC2	760,642.46	3,037,372.92	2,463.08	0	193.79 406.47

ID 68	Label P-11(1)	Length (Scaled) (m) 2,096.00	350.00	Flow (L/s) 192.302	2	Headloss Gradient (m/km) 11.80
321 323 845	P-110 P-111 P-105(1)	411.00 702.00 149.00	100.00	0.87 0.87 6.42	0.11 0.11 0.82	0.2
	P-105(1) P-6(1)(1) P-176	5.00		0.42 10 3.74	0.82	9.72 3.06 3.57
838	P-218 P-12(1)	650.00 1.871.00		3.74	0.48	3.57
974	P-26(1)(1) P-11(2)	569.00 1,090.00	250.00 350.00	171.182 191.182	3.49 1.99	49.02 11.68
823 316	P-13(1) P-4(2)(1)	852.00 1,112.00	150.00 200.00	1.12 61.63	0.06	0.05
657 652	P-14(1) P-193	1,664.00 199.00	150.00 152.40	29.011 2.99	1.64 0.16	22.04 0.30
1009	P-96 P-264(1)	684.00 941.00	100.00 200.00	6.42 9.54	0.82	9.72 0.69
576 675	P-46(1) P-12(2)(1)	1,807.00	160.00 200.00	0.01	0.32	0.74
678 135 1003	P-24(1) P-30 P-266	17.00 20.00 253.00	200.00 200.00 100.00	10 11.812 0.001	0.32	0.7
137	P-200 P-31 P-115	13.00 211.00	200.00	11.81	0.38	1.02
	P-114(1) P-28	757.00	100.00	10	1.20 (N/A)	22 (N/A)
938 666	P-243 P-29(1)	402	152.4 250	0	0.2	
282	P-92(1)(1) P-95	139 664	160 200	0.002	0	
648 868	P-32(1)(1) P-26(2)(1)	456		167.931 0.001	3.42 0	47.31
805 519	P-15(2)(1) P-33(1)	614 3664	150 250	2.891 7.641	0.16	
558 637	P-184 P-192	84	250 250	21.1 -28.742	0.43	
289 770 775	P-97 P-202 P-35(1)	94 36 1137	150 150 80	9.3 10 0.5	0.53 0.57 0.1	2.68 3.0 0.25
947	P-35(1) P-245 P-18(1)	99	80	5.321	1.06	20.37
291 873	P-98 P-226	81	150	0.46	0.03	0.01
772	P-16(2)(1) P-17(2)	28	150 150	16.2 10	0.92	7.49
177	P-43 P-39(1)	3877	100	20.045	2.55	80.11
726	P-38(1) P-42(1)	14	100	11.85	1.51	30.27
	P-41(1) P-256	15	100	10	1.27	22.08
821 579	P-214 P-45(1)	20 240	100	4.818 10.73	0.61	5.7
435 739	P-47(1) P-44(1)	1700	110 150	9.78 3.53	1.03	13.33
742 736	P-20(2)(1) P-144(1)	11 207	150 75	3.53 5	0.2	
710 713	P-49(1) P-50(1)	8	150	10 10	0.57	
716 537	P-51(1) P-181	13	150 100	10 5.136	0.57	3.06
905 352 375	P-81(1) P-124	407	150 100 150	30 2.72 0	1.7 0.35 0	23.45 1.98
375 529 219	P-52(1)(1)(1) P-151(1) P-62	1,565 16 3403	150 100 200	0.514	0.07	0.09
	P-62 P-57(1) P-60	125	150	31.248	1.77	25.29
	P-59(1) P-100	3	100	21.248	1.27	22.11
328 299	P-113 P-102	105	80 63	0.01	0	
425 764	P-77(1) P-53(1)	1505	200 200	19.05 -10	0.61	2.49
885 890	P-99(1) P-61(1)	768		6.87 7.91	0.22	
695 698	P-63(1) P-64(1)	4		10 10	0.57	3.05 3.06
924	P-76 P-239	6 50	150 80	8.802 0	0.5	2.41
241	P-65(1) P-71	444	100	36.83	2.08	34.29 45.05
242 243 301	P-72 P-73 P-103	8 20 207	100 100 100	13.795 8.346 7.74	1.76 1.06 0.99	
502	P-103 P-75(1) P-66(1)(1)	207 828 732	100 100 150	1.061	0.99	0.34
245	P-66(1)(1) P-74 P-68	692	150	0.002	0.55	4.67
239	P-69 P-70	22	100	-4.322 -3.647 -3.049	0.55	3.4
	P-104 P-67(1)	651 2043	150	-3.049 12.74 -1.723	0.39	
264	P-86 P-87	2043	100	13.37	1.7	37.84
396 397	P-135 P-136	29 19	80 80	2.092 2.603	0.42	3.61 5.41
476 707	P-159 P-78(1)	577	100 200	4.161 10	0.53	
701	P-82 P-85(1)	995 13	100	20 10	1.13 1.27	22.09
490 689	P-164 P-83(1)	9	100		0.25	
495	P-84(1) P-166	12	100	6.943	1.27	22.10
496 273	P-167 P-91 P-90(1)	27 801 8	100 250 100	6.357 34.029 10	0.81	
453	P-90(1) P-154 P-160(1)	0 164 359	100	16.49	1.27 2.1 0.53	55.80 4.35
278 280	P-93 P-94	318	110	0	0.00	4.00
285	P-92(2) P-107	239	160	0.001	0.41	1.20
	P-108(1) P-106(1)	986	200 150	6.43 10	0.2	0.33
858 319	P-32(2)(1) P-109	651 121		157.93	3.22	42.22
654 340	P-4(2)(2)(1) P-118	605 17	150 100	58.13 -7.715	3.29 0.98	79.85 13.6
989 350	P-258 P-123	185 185	150 100	10 8.12	0.57	3.00 15.02
	P-253 P-56(2)	79 666	80 200	1.49 51.248	0.3 1.63	
363	P-126 P-52(2)	2393 35		31.619 0	1.79 0	
373 378	P-127 P-129	18		0	0	
377	P-52(1)(2) P-128	15	100	0	0	
379	P-130 P-52(1)(1)(2)	40	100	0	0	
387	P-89(2)(1)(1) P-131	12	250 152.4	0	0	1

http://lining.shoreports.com/hamatep/;28955500/Data and Documents Literary/4. Internal Project Data/4.04 Reports/Masterplan Reports (Final Delivenable)/Appendix/Appe

839	J-198	762,294.91	3,037,371.34	2,280.85	0	25.77
	Bebesa Left_PC2		3,037,187.46	2,311.27	0	-4.58
	J-200		3,036,884.43	2,377.91	0	18.6
	Above Old Highway Dema		3,037,092.61	2,264.04	0	132.25
	Serbithang_PC1		3,036,462.73	2,345.02	0.75	279.79
	J-204		3,034,747.27	2,519.65	0	122.88
	Serbithang_PC2		3,035,017.70	2,634.70	0.75	8.05
	J-206		3,037,430.70	2,305.97	0	130.86
	Simtokha Upper 2b_PC2 J-208		3,037,436.71 3,039,314.24	2,305.16 2,344.38	0	131.67 19.56
				2,344.36	0	
	J-209 J-210		3,039,335.70 3,038,534.41	2,307.75	0	-3.76 205.8
	Olakha 1 PC1		3,038,370.99	2,274.50	0	205.6
	Satellite Town_PC2		3,038,370.99	2,393.49	0	4.5
	Pamtsho PC2		3,045,930.64	2,338.45	0	106.18
	J-214		3,046,047.78	2.359.60	0	85.07
	Pamtsho 2 PC1	760 595 12	3,045,476.93	2.331.83	3.04	93.78
	Pamtsho2 PC2		3,045,359.03	2,473.73	3.04	-46.28
	J-218		3.045.813.00	2.403.78	0	125.68
887	Lower Taba PC2	760.672.26	3,046,292.66	2,360.23	0	169.14
	J-220		3,045,903.46	2,498.77	0	30.51
	Upper Taba_PC		3,046,515.51	2,391.94	0	137.12
894	J-222	761,188.38	3,043,585.34	2,406.91	0	42.34
897	Lang 2_PC1	761,192.29	3,043,601.97	2,407.48	0	41.77
899	J-224		3,043,014.07	2,416.91	0	123.72
902	Kawajangsa and Zilukha_I		3,043,112.02	2,357.72	0	182.8
	J-226		3,041,718.68	2,410.42	0	19
	Upper Motihang_PC		3,041,716.77	2,412.82	0	16.61
	Upper Motihang_PC2		3,041,893.22	2,594.83	0	-13.03
	J-229		3,041,787.46	2,364.11	0	-5.66
	Town Area 2_PC1		3,041,798.22	2,363.23	0	-4.79
	Norzin Wog_PC2		3,041,238.63	2,298.01	0	73.33
	J-232		3,039,665.86	2,361.98	0	42.63
	YHS Res_PC1		3,041,140.16	2,408.97	0	-3.96
	J-235		3,040,950.54	2,301.85	0	102.93
	YHS Res_PC2		3,040,866.96	2,293.33	0	111.43
	J-237 Changdelo PC		3,040,228.87 3,040,162.27	2,315.68 2,311.94	0	21.3
	Changedaphu & UChangz		3,039,394.71	2,311.94	1.49	-6.97
	Bangdu Residents PC2		3,039,394.71	2,493.63	1.49	-0.97
	J-241		3,039,281.11	2,354.33	0	270.54
	J-242		3,036,399.08	2,371.99	0	252.92
	J-243		3,048,562.02	2,516.00	0	2.98
	Community supply PC1		3,048,648.25	2.515.00	2.84	3.31
	Community supply_PC2		3,048,250.52	2,398.00	2.48	115.55
	J-246		3.039.668.76	2.369.00	0	-52.9
	Changiji 2 PC1		3.039.501.02	2.410.00	3.42	-95.36
	Changiji 2 PC2		3,040,384.21	2,594.00	3.42	-288.05
	J-250		3,034,289.98	2.872.42	0	-145.33
969	J-251		3,035,362.09	2,650.58	0	35.32
973	J-252		3,038,043.30	2,305.36	0	195.86
976	J-253		3,038,166.20	2,310.00	3.25	190.71
	J-254		3,040,087.41	2,477.16	0	38.53
990	J-255	761,792.67	3,048,878.67	0	0	2,513.91
	Community supply PC1	762,079.55	3,048,775.52	2,568.00	0	-48.92
	Community supply PC2		3,049,036.61	2,410.00	0	108.76
	J-259		3,043,289.82	0	0	2,453.05
	J-260		3,039,096.98	0	0	2,359.24
	J-261		3,038,189.29	0	0	2,359.24
	J-262		3,039,027.36	0	0	2,359.24
	J-263		3,046,713.53	2,460.27	0	22.04
	YHS2_PC2		3,040,765.35	2,520.00	0	-115.07
1016	YHS2_PC1	761,704.77	3,040,176.10	2,280.00	1.06	124.44

ndix A - Pressure and Velocity Water Model Results

Reports (Final Deliv

388	P-89(2)(2) P-89(2)(1)(2) P-132	3214 14 16	250 250 152.4	44.029 0	0.9	3.96
394	P-134 P-138	14	152.4	29.43	1.61	20.9
402	P-138 P-139 P-137(1)	25	80 80	2.499 2.196 4.695	0.44	3.95
411	P-137(2) P-141	1490 2795	80 80	4.695	0.93	16.15 44.28
	P-265 P-142	24 57	152.4 80	0 -17.149	0 3.41	177.93
	P-143 P-162	54 606	80 100	-16.73 20.29	3.33 2.58	169.96 81.93
201	P-235 P-54	235 1,516	152.4 200	0.001	0	
877	P-56(1) P-227(1)	2,036 475	200 150	82.867 3.04	2.64 0.17	37.92 0.33 23.12
471	P-229 P-77(2)(1) P-145(1)	763 3380 1179	63 200 150	3.04 16.01 3.04	0.98 0.51 0.17	23.12 1.80 0.33
440	P-143(1) P-148(1) P-47(2)(1)	31	150 150 150	6.25	0.17	1.28
443	P-149 P-148(2)(1)	755	150	2.72	0.15	0.44
446	P-150 P-152	142	150	4.17	0.24	0.60
451	P-153 P-155	1891 33	80 100	-5.496 8.12	1.09 1.03	21.62 15.02
	P-67(2)(1) P-119	122 22	100 100	-9.843 -7.715	1.25 0.98	21.46 13.6
469	P-89(1) P-157	15 1151	250 100	29.431	0.6	1.88
474	P-77(2)(2) P-158	173 1,069	200	10 6.01	0.32	0.75
	P-237 P-161 P-182	1398 928 24	152.4 100 100	0.001 4.16 -5.034	0 0.53 0.64	4.35
810	P-162 P-211 P-40(2)	24 1670 968	100	-5.034 6.01 15.72	0.64	8.60
488	P-163 P-165	24	100	4.42	0.56	4.88
536	P-165 P-180 P-168	13	100	-6.182 6.65	0.79 0.85	9.06
500 919	P-169 P-75(2)(1)	458	80	6.65	1.32	30.78
1015 1017	P-271 P-272	550 232	152.4 152.4	0 1.06	0.06	0.03
520	P-173 P-33(2)	124 187	100 200	4.11 2.891	0.52	4.25
522 900	P-177 P-151(2)(1)	526 845	100 150	4.75	0.6	5.56
535	P-117(2) P-179 P-10(2)(1)(1)(1)	996 60 1370	100 100 150	-7.715 23.48 21.1	0.98 2.99 1.19	13.66 107.3 12.22
769	P-10(2)(1)(1)(1) P-201 P-200	1370	150	16.2 92.868	0.92	7.49
754	P-198 P-196	13	400 250	29.43	0.23	0.18
603	P-37(2)(2) P-187	885 26	150 150	43.746	2.48	47.1
189 485	P-48 P-40(1)	2589 3762	150 100	30.001 20.14	1.7 2.56	23.45 80.81
967	P-195 P-4(1)(2)(2)(1)	10 1094	400 200	-93.887 180.535	0.75 5.75	1.62 160.40
683 970	P-194 P-21(2)(2)(1)(1)	252 1215	250 250	-214.915 214.915	4.38 4.38	74.7 74.7
640 643	P-6(2) P-106(2)	5 5	150 150	10 10	0.57	3.05 3.06
655	P-10(2)(2) P-4(2)(2)(2)	6	150 150	19.6 58.129	1.11 3.29	10.66 79.84
658 661 667	P-14(2) P-114(2)	7	150	29.012 10 10	1.64	22.04
676	P-29(2) P-12(2)(2) P-24(2)	3 5 5	250 200 200	10	0.2 0.32 0.32	0.23
682 649	P-21(2)(2)(2) P-32(1)(2)	4	250 250	304.809 167.93	6.21	142.72
687 690	P-42(2) P-83(2)	6	100	10	1.27	22.09
696	P-84(2) P-63(2)	7 4	100 150	10 10	1.27 0.57	22. 3.05
702	P-64(2) P-85(2)	7 10	150 100	10 10	0.57	3.06 22.10
708	P-90(2) P-78(2)	8 8	100 200	10 10	1.27 0.32	22.10 0.75
714	P-49(2) P-50(2)	6 6	150 150	10 10	0.57	3.06
721	P-51(2) P-41(2)	8	150 100	10	0.57	3.07
727	P-39(2) P-38(2) P-148(2)(2)	8 9 9	152.4 100 150	11.85 11.85 3.53	0.65	3.88 30.27 0.44
734	P-146(2)(2) P-47(2)(2) P-144(2)	9 13 4	150 150 75	3.53	0.2	0.44
740 743	P-44(2) P-20(2)(2)	4 4 7	150 150	3.53	0.2	0.43
746	P-59(2) P-197	2	100 150	10 -14.598	1.27	22.0
757 758	P-116(1)(1)(2) P-199	1847 9	150 150	-14.598 14.598	0.83	6.17 6.18
765	P-145(2) P-53(2)	20 7	150 200	3.04 -10	0.17	0.33
773	P-16(1)(2)(2) P-16(2)(2)	360 5	150 150	16.2	0.92	7.49
779	P-35(2) P-18(2) P-203	5 16 29	80 150 100	0.5	0.1	0.24 3.06 1.86
793	P-203 P-204(1) P-205	29 324 11	100 80 100	2.63 2.63	0.33 0.4 0.33	1.86 3.32 1.85
790 791	P-206(1) P-206(2)	933	100	2.03	1.27	22.09
794 799	P-204(2) P-65(2)	6 1763	80 150	2 36.83	0.4	3.30 34.29
828 833	P-210(1) P-15(2)(2)(1)	1630 710	152.4 100	0.001 2.89	0	2.21
813 940	P-10(2)(1)(2) P-212(1)	1199 750	150 100	19.6 0.75	1.11 0.1	10.66 0.18
819	P-66(2) P-213	441 425	150 152.4	0	0	0.05
826	P-13(2) P-215	582 239	150 152.4	1.12	0.06	0.05
831	P-210(2) P-216 P-15(2)(2)(2)	246 688 280	152.4 152.4 100	0.001	0 0.37	2.21
836	P-15(2)(2)(2) P-217 P-108(2)	280 1839 559	100 80 200	2.89 0.001 6.43	0.37	0.33
843	P-108(2) P-219 P-105(2)	287 192	152.4 100	6.43 0 6.42	0.2	9.72
848	P-220 P-10(2)(1)(1)(2)	736	152.4 150	20.35	0.02	11.43
856 859	P-222 P-32(2)(2)	363 926	152.4 250	0.75	0.04	0.02
861 864	P-223 P-92(1)(2)	8 455	152.4 160	0.002	0	
866	P-224 P-26(2)(2)	52 2132	152.4 250	0	0	
871	P-225	416	90	0	0	

880 Pamtsho2_PC	824	63	3.04	0.98	23.12
886 P-99(2)	17	200	6.87	0.22	0.37
888 P-230	698	90	0	0	(
891 P-61(2)	982	150	7.91	0.45	1.98
893 P-231	1007	90	0	0	(
896 P-57(2)	61	150	31.248	1.77	25.29
898 P-232	17	152.4	0	0	
901 P-151(2)(2)	578	150	0.514	0.03	0.01
903 P-233	197	90	0.001	0	1
906 P-81(2)	754	150	30	1.7	23.45
908 P-234	16	90	0	0	-
913 P-160(2)	1690	100	4.16	0.53	4.35
915 P-236	31	90	0	0	
920 P-75(2)(2)	56	100	0.001	0	-
927 P-66(1)(2)	79	150	0.001	0	-
929 P-240	88	152.4	0.001	0	
932 P-67(2)(2)	1944	100	-9.843	1.25	21.46
934 P-241	74	152.4	0	0	
945 P-244	9	152.4	0.75	0.04	0.03
982 P-212(2)(1)	110	100	0	0	
944 P-221(2)	129	90	0.75	0.12	0.30
949 P-246	105	80	2.84	0.56	6.36
951 P-247	1050	80	2.48	0.49	4.95
991 P-259	1294	152.4	0.001	0	
955 P-249	172	80	3.42	0.68	8.98
957 P-250	1182	80	3.42	0.68	8.98
958 P-251	401	80	-6.84	1.36	32.43
968 P-4(1)(2)(2)(2)	2965	200	90.641	2.89	44.77
972 P-254	1074	200	89.894	2.86	38.01
971 P-21(2)(2)(1)(2)	728	250	304.808	6.21	142.70
975 P-26(1)(2)	323	250	167.932	3.42	47.31
977 Workshop	221	100	3.25	0.41	2.37
980 P-6(1)(2)	1205	150	10	0.57	3.06
983 P-212(2)(2)	6	90	0	0	
986 P-117(1)(2)	797	100	15,765	2.01	51.3
993 P-260	305	152.4	0.001	0	
995 P-261	237	152.4	0.001	0	
1005 P-267	1050	80	0.001	0	
1007 P-268	538	80	0.001	0	
1013 P-270	7	152.4	6.5	0.36	1.09
1019 P-264(2)(1)	840	250	3.04	0.06	0.02
1020 P-264(2)(2)	23	200	3.04	0.1	0.08
627 P-190	61	200	180.535	5.75	160.40

		<u>س</u>	2047 Scen	ario: Node pressure			Elevation	Demand	Pressure
		ğ	ID 63		X (m) 764,118.88	Y (m) 3,037,859.93	(m) 2,306.25	(L/s) 0	(m H2O) 220.68
Sheet number	rence	26/05/2023	67 70 72		764,994.75 764,091.47 764,722.36	3,037,477.71 3,038,212.79 3,036,334.19	2,379.98 2,393.29 2,757.00	0 1.86 0	160.48 147 -164.01
Sheet n		e 26/0	78	Debsi_PC1	760,439.73	3,037,252.66	2,475.54 2,367.53	14.75	114.27
Sheet numb	Drawing reference	Date	128	J-32	761,528.39	3,039,496.04 3,039,306.87	2,390.52 2,430.19	0	90.22 58.13
	_		134 136 138	Olakha1a	763,053.53 763,062.80 763,269.20	3,039,189.09 3,039,176.63 3,038,052.00	2,358.75 2,359.47 2,304.86	19.28 19.28 0	5.19 4.49 176.42
289551	Ref.	e by	143	J-37	761,385.95	3,036,513.60 3,033,510.97	2,288.11 2,640.00	0	359
2895	Ded la	Made	151	J-41	760,444.69	3,048,382.11 3,048,527.23	2,500.38 2,523.06	0	20.05 53.99
			159 165 171	J-44	758,318.59	3,048,463.66	2,515.64 2,590.85 2,479.05	0	5.24 235.49
			171 179 188	J-46	759,066.26	3,040,087.93 3,044,620.53 3,041,906.29	2,479.05 2,465.35 2,437.68	0	33.59 6.6 370.81
			200	J-50	760,321.97	3,044,993.07	2,361.50 2,423.13	0	178.21 29.3
			206 214	Upper Taba	760,952.29	3,043,618.75 3,045,755.26	2,399.27 2,404.68	0 14.5	48.43 117.06
			218 224 226	J-55	761,780.43 762,556.72 761,786.39	3,041,091.48 3,039,587.05 3,041,087.77	2,402.77 2,327.92 2,402.80	0	40.36 1.39 2.16
			220	Changdelo PC1	760,679.73	3,040,887.03	2,351.08 2,323.98	0	53.78
		_	233 244	J-59 Changjiji Demand_PC1	760,087.09	3,041,513.77 3,039,520.56	2,371.39 2,279.98	0.01	3.54 48.92
	Thisselve Western Consistent Manadam	rerpiar	246 249	Bhutan Hospital J-63	759,655.78		2,362.94 2,436.39	0	41.65 76.67
	Max	2 Mas	254 257 269	J-65	760,523.56	3,041,131.75 3,040,395.63 3,042,137.06	2,396.54 2,391.35 2,359.01	0	15.19 9.38 17.87
	- and	SILVICES	209	J-67	762,568.91	3,039,091.00	2,291.44 2,289.19	0	72.36
	0.00		279 281	J-69 J-70	763,384.81	3,038,694.17 3,038,634.82	2,279.63 2,343.90	0	84.15 20.03
ο.	14/2		283 286	Dangrina_PC1	760,802.11	3,039,285.77 3,047,749.34	2,316.26 2,425.87	0	47.59 35.23
5	Interior		288 290 292	Satellite Town PC1	760,513.32 761,562.99	3,048,483.79 3,047,981.72 3,045,807.98	2,514.90 2,380.91 2,402.46	19.92 0.99 12.58	5.06 17.05 126.38
2			292	Lango Residents 1	761,024.89	3,045,807.98 3,043,672.81 3,043,685.87	2,402.46 2,384.74 2,314.94	12.58 5.03 0	126.38 16.35 111.44
Y	all Hol.	Calculation	300 302	YHS Residents Changiji Residents Demand	761,605.40	3,041,158.13 3,039,937.83	2,387.08 2,310.59	13.2 21.48	10.23 9.82
	-		304	Above Old Highway Demand_PC1 J-82	762,388.78	3,036,764.87 3,037,793.73	2,385.80 2,308.10	12.19	1.33 152.6
			311 313 315	Bebesa Left_PC1	761,850.25	3,038,106.06 3,037,311.43 3,036.963.52	2,294.68 2,264.80 2,587.49	23.39 11.69 0	10.46 40.56 -19.87
			315 318 320	Simtokha E4 Demand		3,036,963.52 3,037,056.79 3,037,349.05	2,587.49 2,559.08 2,458.12	0 5.84 1.44	-19.87 8.34 62.5
			322 325	Simtokha Upper 1_PC2 Lango Res1_PC2	762,708.09	3,037,403.33 3,043,598.41	2,308.64 2,386.85	1.44 0.01	211.5 14.37
			334	Bangdu Residents_PC1 J-92	761,578.82 761,343.57	3,039,430.31	2,428.10 2,488.86	3.69 0	3.36 -0.45
			349 351 357	Changzamtog Demand 2 Hejo& Kawajangsa_PC2 J-97	760,407.82	3,039,558.15 3,043,922.64 3,044,126.19	2,427.70 2,316.24 2,377.18	14.64 5.04 0	50.92 77.88 85.51
			361	J-98		3,044,941.82 3,044,936.23	2,356.19	0	3.8
			380 383	J-101 J-102	760,386.72	3,044,955.61 3,044,930.46	2,356.68 2,357.32	0	3.28 32.3
			399 404	J-105	760,054.26	3,040,398.73 3,041,482.39	2,387.11 2,370.63	0	5.98 3.26
			415 422 424	Taba / Dotena	758,382.11 761,474.11 760,297.08	3,042,032.19 3,045,679.81 3,045,020.63	2,583.62 2,533.35 2,360.81	0	-9.68 6.7 162.83
			429	Pamtsho_PC1	760,303.92		2,564.66 2,451.02	13.78	-83.38
			439 442	Hejo & Kawajangsa_PC1	759,776.42	3,043,705.43 3,044,313.59	2,436.35 2,417.12	0 5.04	7.57 26.11
			445 447 449	J-122	759,590.95	3,043,424.69 3,042,529.17 3,042,599.10	2,451.37 2,446.23 2,393.55	6.38 0 11.59	-9.34 77.34 110.34
			449 452 454	Norzin Wog_PC1		3,042,234.65	2,393.55 2,351.90 2,305.76	32.79	-24.58
			457	Changzamtog Demand 1		3,040,131.04 3,039,985.82	2,305.95	14.64 23.48	13.91 83.73
			463 467	Changbangdu - BHs Jungshina	760,376.27	3,039,416.84 3,044,970.08	2,488.98 2,357.77	0	-0.31 2.22
			468 470 473	J-136	759,674.27		2,314.12 2,430.89 2,347.52	0.62	86.56 82.29 134.5
			473 475 477	Town Area 2a	760,375.62 760,492.18 760,924.41	3,042,631.67 3,041,462.19 3,041,040.67	2,347.52 2,335.14 2,313.18	8.39 8.39	134.5 29.59 14.07
			479	J-140	759,676.62	3,041,912.72	2,432.94 2,356.47	0.00	5.54
			482 484	J-143	759,923.06	3,041,988.83 3,040,755.22	2,522.41 2,453.51	32.7 0	-68.53 105.18
			487 489 491	Above RICB Tank a	760,062.17	3,040,768.73 3,041,105.88 3,040.092.09	2,452.84 2,399.98 2,477.61	5.24 2	105.69 2.01 2.27
			491 492 494			3,040,031.16	2,287.55 2,387.04	11	185.04
			497 499	Changdelo_PC2 Changdelo Demand 2	761,335.27	3,040,377.10 3,040,786.44	2,290.78 2,353.19	11.64 11.64	71.12
			501 510	J-151 Bangdu Area left_PC1	762,090.51	3,040,392.20 3,038,962.40	2,314.22 2,405.02	0 7.26	90.28
			516 518 521	J-157		3,036,529.10 3,036,330.99 3,036,196.70	2,329.80 2,305.19 2,252.43	6.57 0 8.48	3.23 342.92 387.03
			521 532 548	J-160		3,039,952.85	2,252.43 2,410.33 2,644.00	8.48 0	387.03 62.84 15.05
			575 578	Bebena 1_PC1 Bebena 1a Demand	760,350.72	3,044,483.92 3,044,773.37	2,345.83 2,441.47	0.01 20.39	120.23 22.77
			601 605	J-168 J-169	757,550.83	3,042,096.37 3,042,074.31	2,675.00 2,682.00	0	193.36 187.6
			624 632 651	J-173		3,033,559.92 3,035,688.01 3,036,669.73	2,915.00 2,792.00 2,537.68	0 0 4.83	-12.74 -3.05 19.33
			651 750 755	J-176	761,147.43	3,043,624.77 3,044,933.85	2,537.68 2,399.49 2,356.20	4.83	19.33 1.71 33.47
			766 782	J-178 Luding Demand 1	760,123.92 763,846.55	3,048,687.37 3,039,059.53	2,573.00 2.634.50	0 4.41	6.84 10.34
			785	J-182	763,921.25 761,599.65	3,038,737.26 3,040,713.58	2,513.27 2,396.84	4.41	5.67
			804 807 809	Rama_PC2		3,036,909.98 3,035,658.15 3,041,163.14	2,290.16 2,244.00 2,357.57	0 13.47 11.59	344.12 380.97 32.34
			811	J-188 J-189	762,165.23	3,041,103.14 3,035,991.09 3,040,938.84	2,357.57 2,498.29 2,299.88	0	32.34 124.42 104.87
			818 822	Changdelo 1a J-191	761,184.30	3,040,535.49 3,037,901.85	2,305.04 2,346.00	0	99.72 194.28
			825 827	J-193	759,800.25	3,037,879.71 3,035,899.49	2,307.88 2,274.00	0	232.32 352.24
			830 832 835	J-195		3,036,266.35 3,037,372.92 3,036,250.18	2,381.00 2,463.08 2,249.97	0	245.45 139.38 352.06
			835 837 839	Bebesa Right_PC2	761,369.59	3,036,912.39 3,037,371.34	2,263.39 2,280.85	0 6.57 0	352.06 63.88 25.11
			842	Bebesa Left_PC2	762,320.58	3,037,187.46 3,036,884.43	2,280.85 2,311.27 2,377.91	0	-5.25
			847 850	Above Old Highway Demand_PC2 Serbithang_PC1	761,726.57	3,037,092.61 3,036,462.73	2,264.04 2,345.02	0	128.95 276.95
			852 855	J-204 Serbithang_PC2	762,779.65	3,035,017.70	2,519.65 2,634.70	0	121.03
			857 860 862	J-206 Simtokha Upper 2b_PC2 J-208	762,632.60 762,637.10 763,002,65	3,037,430.70 3,037,436.71 3,039,314.24	2,305.97 2,305.16 2,344.38	0	128.76 129.57 19.53
			862 865 867	J-209	763,050.22	3,039,314.24 3,039,335.70 3.038.534.41	2,344.38 2,367.75 2,280.10	0	19.53 -3.79 200.96
			870	Olakha 1_PC1	762,916.19	3,038,534.41 3,038,370.99 3,048,215.92	2,274.50 2,393.49	0	206.54 4.5
			874 876	Pamtsho_PC2 J-214	760,513.38	3,045,930.64 3,046,047.78	2,338.45 2,359.60	0	105.76 84.65
			879		760,595.12	3,045,476.93 3,045,359.03	2,331.83	6.09 6.06	43.54

68	Label P-11(1)	Length (Scaled) (m) 2.096.00	Diameter (mm) 350.00	Material	Flow (L/s)	Velocity (m/s) 2.06	Headloss Gradient (m/km) 12.5
321	P-110	2,096.00 411.00	100.00	Ductile Iron Ductile Iron	198.39 1.44	0.18	0.61
845	P-111 P-105(1)	702.00	100.00	Ductile Iron Ductile Iron	1.44 12.19	0.18	0.61 31.89
979 517	P-6(1)(1) P-176	5.00 95.00	150.00	Ductile Iron Ductile Iron	10 6.57	0.57	3.06
838	P-218 P-12(1)	650.00	100.00	Ductile Iron	6.57	0.84	10.15
974	P-26(1)(1)	1,871.00 569.00	250.00	Ductile Iron Ductile Iron	176.53	0.64	51.89
823	P-11(2) P-13(1)	1,090.00 852.00	350.00 150.00	Ductile Iron Ductile Iron	196.53 1.86	2.04	12.29
316	P-4(2)(1) P-14(1)	1,112.00	200.00	Ductile Iron Ductile Iron	62.604 28.42	1.99 1.61	22.56
652	P-193 P-96	199.00	152.40	Ductile Iron	4.83	0.26	0.73
1009	P-264(1)	941.00	200.00	Ductile Iron Ductile Iron	16.82	0.54	31.89 1.97
675	P-46(1) P-12(2)(1)	1,807.00	160.00 200.00	Ductile Iron Ductile Iron	0.01	0.32	0.74
678 135	P-24(1)	17.00 20.00	200.00	Ductile Iron Ductile Iron	10 19.282	0.32	0.7
1003	P-266	253.00	100.00	Ductile Iron	0.001	0	
332	P-31 P-115	13.00 211.00	200.00	Ductile Iron Ductile Iron	19.28 3.69	0.61	2.5
660 132	P-114(1) P-28	757.00 217.00	100.00 200.00	Ductile Iron Ductile Iron	10 (N/A)	1.27 (N/A)	22 (N/A)
663	P-27(1) P-243	16 402	250 152.4	Ductile Iron Ductile Iron	10	0.2	0.25
666	P-29(1)	3	250	Ductile Iron	10	0.2	0.24
282	P-92(1)(1) P-95	139 664	160 200	Ductile Iron Ductile Iron	0.002	0	
648 868	P-32(1)(1) P-26(2)(1)	456	250 250	Ductile Iron Ductile Iron	163.279 10.001	3.33	44.9
805	P-15(2)(1)	614	150	Ductile Iron	28.22	1.6	20.94
558	P-33(1) P-184	3664 84	250 250	Ductile Iron Ductile Iron	36.7 22.04	0.75	2.8
	P-192 P-97	87 94	250 150	Ductile Iron Ductile Iron	-58.741 19.92	1.2	6.76 10.98
770	P-202 P-35(1)	36	150	Ductile Iron	10	0.57	3.0
947	P-245	1137 99		Ductile Iron Ductile Iron	0.5 7.401	0.1	0.25
778 291	P-18(1) P-98	966 81	150 150	Ductile Iron Ductile Iron	10	0.57	3.06
873	P-226	188	90	Ductile Iron	0.00	0	
161	P-16(2)(1) P-17(2)	28 136	150 150		10	0.92	7.49
177	P-43 P-39(1)	3877	100 152.4	Ductile Iron Ductile Iron	20.167 11.85	2.57	81.0 3.88
726	P-38(1) P-42(1)	14	100	Ductile Iron Ductile Iron	11.85	1.51	30.2
720	P-41(1)	15	100	Ductile Iron	10	1.27	22.10
821	P-256 P-214	13	100	Ductile Iron Ductile Iron	15.316 4.818	1.95 0.61	48.69
579 435	P-45(1) P-47(1)	240 1700	160 110	Ductile Iron Ductile Iron	20.39 10.953	1.01	8.3
739	P-44(1)	7	150	Ductile Iron	3.53	0.2	0.45
736	P-20(2)(1) P-144(1)	11 207	150 75	Ductile Iron Ductile Iron	3.53	0.2	0.44
710	P-49(1) P-50(1)	8	150 150	Ductile Iron Ductile Iron	10 10	0.57	3.05
716	P-51(1)	13	150	Ductile Iron	10	0.57	3.06
905	P-181 P-81(1)	407	100 150	Ductile Iron	10.089 30	1.28	22.46
	P-124 P-52(1)(1)(1)	1,081	100	Ductile Iron Ductile Iron	5.04	0.64	6.21
529	P-151(1) P-62	16 3403	100 200	Ductile Iron Ductile Iron	5.451 20	0.69	7.18
895	P-57(1)	125	150	Ductile Iron	31.248	1.77	25.29
745	P-60 P-59(1)	238	100	Ductile Iron Ductile Iron	21.248	2.71	89.24
295	P-100 P-113	150 105	150 80	Ductile Iron Ductile Iron	5.03 0.01	0.28	0.85
299	P-102	969	63	Ductile Iron	0	0	4.00
764	P-77(1) P-53(1)	1505 4	200 200	Ductile Iron Ductile Iron	24.63 -10	0.78	4.00
885 890	P-99(1) P-61(1)	768	200 150	Ductile Iron Ductile Iron	12.58 14.5	0.4	1.15
695	P-63(1) P-64(1)	4	150	Ductile Iron	10	0.57	3.05
248	P-76	6	150	Ductile Iron	14.262	0.81	5.92
798	P-239 P-65(1)	50 444	80 150	Ductile Iron Ductile Iron	0 36.83	2.08	34.29
241	P-71 P-72	7	100 100	Ductile Iron Ductile Iron	14.689 13.795	1.87	45.05
243	P-73 P-103	20	100	Ductile Iron	8.346	1.06	15.81
502	P-75(1)	828	100	Ductile Iron Ductile Iron	1.061	1.68 0.14	36.95 0.34
926 245	P-66(1)(1) P-74	732	150 150	Ductile Iron Ductile Iron	0.002	0	
	P-68	16	100	Ductile Iron	-9.893 -8.348	1.26	21.66
240	P-69 P-70	22	100	Ductile Iron Ductile Iron	-6.978	1.06 0.89	15.8° 11.35
	P-104 P-67(1)	651 2043	150 100	Ductile Iron Ductile Iron	21.48	1.22	12.63
264	P-86 P-87	27	100	Ductile Iron Ductile Iron	12.813	1.63	34.97 23.61
396	P-135	29	80	Ductile Iron	2.092	0.42	3.61
	P-136 P-159	19 577	80 100	Ductile Iron Ductile Iron	2.603 8.39	0.52	5.41 15.96
	P-78(1)	5 995	200 150	Ductile Iron	10	0.32	0.79
701	P-82 P-85(1)	13	100		20 10	1.13	11.0 22.09
490 689	P-164 P-83(1)	9	100 100	Ductile Iron	2	0.25	1.11
692	P-84(1) P-166	12	100	Ductile Iron	10	1.27	22.10
496	P-167	27	100	Ductile Iron Ductile Iron	11.127	1.42	26.93
704	P-91 P-90(1)	801 8	250 100	Ductile Iron Ductile Iron	34.079 10	0.69	2.46
453	P-154 P-160(1)	164	100	Ductile Iron Ductile Iron	32.79 8.391	4.17	199.3 ⁻ 15.96
278	P-93	318	110	Ductile Iron	0	0	10.90
285	P-94 P-92(2)	529 239		Ductile Iron Ductile Iron	0.001	0	
312	P-107 P-108(1)	505 986	200	Ductile Iron Ductile Iron	23.39 11.69	0.74	3.64
642	P-106(1)	8	150	Ductile Iron	10	0.57	3.05
310	P-32(2)(1) P-109	651 121	150	Ductile Iron Ductile Iron	153.279 5.84	3.12 0.33	39.95 1.1
654	P-4(2)(2)(1) P-118	605	150		56.764 -8.164	3.21	76.41
989	P-258	185	150	Ductile Iron	10	0.57	3.06
964	P-123 P-253	185 79	80	Ductile Iron Ductile Iron	14.64 1.49	1.86 0.3	44.76 1.92
359 360	P-56(2) P-126	666 2393	200 150	Ductile Iron Ductile Iron	51.248 31.619	1.63 1.79	15.57 25.85
363	P-52(2)	35	150	Ductile Iron	0	0	20.00
378	P-127 P-129	18 14	100 100	Ductile Iron Ductile Iron	0	0	
370 377	P-52(1)(2) P-128	15	100	Ductile Iron Ductile Iron	0	0	
379	P-130	40	100	Ductile Iron	0	0	
387	P-52(1)(1)(2) P-89(2)(1)(1)	39 12	100 250	Ductile Iron Ductile Iron	0	0	
391	P-131 P-133	15	152.4	Ductile Iron Ductile Iron	0 29.45	0	20.98
385	P-89(2)(2)	3214	250	Ductile Iron	44.079	0.9	20.98
388	P-89(2)(1)(2) P-132	14	250 152.4	Ductile Iron Ductile Iron	0	0	
	P-134	14	152.4	Ductile Iron	29.45	1.61	20.98
394	P-138 P-139	19 25	80	Ductile Iron Ductile Iron	2.499 2.196	0.5 0.44	5.02 3.95
394 401 402	P-137(1)	30	80 80		4.695 4.695	0.93	16.15
394 401 402 410	P-137/2			Louistie Iron	4.095		
394 401 402 410 411 416	P-137(2) P-141	1490 2,795	80	Ductile Iron	-7.812	1.55	41.47
394 401 402 410 411 411 416 1001	P-137(2)	1490 2,795 24 57		Ductile Iron Ductile Iron	-7.812 0 -23.325	1.55 0 4.64	
394 401 402 410 411 416 1001 417 418	P-137(2) P-141 P-265 P-142 P-143	2,795 24 57 54	80 152.4 80 80	Ductile Iron Ductile Iron Ductile Iron Ductile Iron	0 -23.325 -23.326	0 4.64 4.64	314.51 314.5
394 401 402 410 411 416 1001 417 418 483 910	P-137(2) P-141 P-265 P-142	2,795 24 57	80 152.4 80	Ductile Iron Ductile Iron Ductile Iron	0 -23.325	0 4.64	41.47 314.51 314.5 198.30

884 J-218	760.929.45 3.045.813.00	2.403.78	0	125.0
887 Lower Taba PC2	760.672.26 3.046.292.66	2.360.23	Ő	168.5
889 J-220		2,498.77	0	29.1
892 Upper Taba PC	761.151.31 3.046.515.51	2.391.94	0	135.7
894 J-222	761,188.38 3,043,585.34	2,406.91	0	42.3
897 Lang 2 PC1	761.192.29 3.043.601.97	2,407.48	0	41.7
899 J-224	759.867.39 3.043.014.07	2,416.91	0	107.1
902 Kawajangsa and Zilukha PC2	760.038.10 3.043.112.02	2.357.72	0	166.2
904 J-226	759,835.02 3,041,718.68	2,410.42	0	100.2
907 Upper Motihang PC	759,819.36 3,041,716.77	2,412.82	0	16.6
909 Upper Motihang PC2	758.333.90 3.041.893.22	2,412.02	0	-20.8
911 J-229	760,282.72 3,041,787.46	2,394.03	0	-20.8
911 J-229 914 Town Area 2 PC1	760.304.24 3.041.798.22	2,363.23	0	-9.0
			0	
916 Norzin Wog_PC2 918 J-232	761,111.67 3,041,238.63	2,298.01	0	66.6
	762,581.84 3,039,665.86	2,361.98		42.6
923 YHS Res_PC1	761,805.84 3,041,140.16	2,408.97	0	-3.9
925 J-235	761,175.06 3,040,950.54	2,301.85	0	102.9
928 YHS Res_PC2	761,201.33 3,040,866.96	2,293.33	0	111.4
930 J-237	761,164.94 3,040,228.87	2,315.68	0	8.8
933 Changdelo_PC	761,197.65 3,040,162.27	2,311.94	0	12.5
935 Changedaphu & UChangzamtok_PC2	761,285.73 3,039,394.71	2,493.83	1.49	-6.9
937 Bangdu Residents_PC2	761,743.06 3,039,281.11	2,358.47	0	122
939 J-241	761,556.09 3,036,390.81	2,354.33	0	267.7
942 J-242	761,558.29 3,036,399.08	2,371.99	0	250.1
946 J-243	760,538.51 3,048,562.02	2,516.00	0	1.2
948 Community supply_PC1	760,478.33 3,048,648.25	2,515.00	3.7	1.1
950 Community supply_PC2	761,541.10 3,048,250.52	2,398.00	3.7	108.1
952 J-246	762,949.84 3,039,668.76	2,369.00	0	-7
954 Changiji 2 PC1	762,988.69 3,039,501.02	2,410.00	5.48	-115.6
956 Changiji 2 PC2	763.890.80 3.040.384.21	2.594.00	5.48	-320.9
966 J-250	766.583.83 3.034.289.98	2.872.42	0	-145.6
969 J-251	766.641.72 3.035.359.96	2.650.58	0	35 2
973 J-252	763,587.01 3,038,043.30		ō	192.0
976 Workshop	763,402.87 3,038,166.20		3.25	186.9
984 .1-254	760.231.35 3.040.087.41	2.477.16	0	34.8
990 J-255	761,792.67 3,048,878.67	2,477.10	ő	2,512.2
992 Community supply PC1	762.079.55 3.048.775.52	2.568.00	ō	-50.6
994 Community supply PC2	761,615.39 3,049,036.61	2.410.00	ő	107.0
1000 J-259	759.642.18 3.043.289.82	2,410.00	0	2,453.0
1000 J-260	763,307.27 3,039,096.98	0	0	2,453.0
1002 J-260	763.835.90 3.038.189.29	0	0	2,359.2
1004 J-261	763,841.06 3,039,027.36	0	0	2,359.2
1008 J-263	760.298.52 3.046.713.53		0	2,339.
1008 J-263 1014 YHS2 PC2	762.022.63 3.040.765.35		0	-115.0
	102,022.03 3,040,705.35	2,020.00	0	-115.0
1016 YHS2 PC1	761.704.77 3.040.176.10	2.280.00	1.06	124.4

760	P-229 P-77(2)(1) P-145(1)	763 3380 1179	200 150		6.06 21.59 3.04	1.94 0.69 0.17	82.97 3.14 0.33
440 733	P-148(1) P-47(2)(1)	31 25	150 150	Ductile Iron Ductile Iron	8.57 2.383	0.48 0.13	2.30
729	P-149 P-148(2)(1) P-150	755 255 142	150 150	Ductile Iron Ductile Iron	5.04 3.53	0.29	0.86
450	P-150 P-152 P-153	142 228 1,891	150 80 80	Ductile Iron Ductile Iron Ductile Iron	6.38 11.59 -6.139	0.36 2.31 1.22	1.33 86.12 26.54
458	P-155 P-67(2)(1)	33	100	Ductile Iron	-10.901	1.86	44.76
341 381	P-119 P-89(1)	22 15	100 250	Ductile Iron Ductile Iron	-8.164 29.45	1.04	15.17
472	P-157 P-77(2)(2)	1151 173	100 200	Ductile Iron Ductile Iron	-0.62 10	0.08	0.12
917	P-158 P-237 P-161	1069 1398 928	100 152.4 100	Ductile Iron Ductile Iron Ductile Iron	11.59 0.001 8.39	1.48 0 1.07	29.04
538	P-161 P-182 P-211	928 24 1.670	100	Ductile Iron Ductile Iron Ductile Iron	-9.891 11.59	1.26	21.65
486	P-40(2) P-163	968	100	Ductile Iron	15.149	1.93	47.69
493	P-165 P-180	1893 13	150 100	Ductile Iron Ductile Iron	11 -6.182	0.62	3.65
500	P-168 P-169	1033 458	100 80	Ductile Iron Ductile Iron	11.64 11.64	1.48 2.32	29.27 86.81
1015	P-75(2)(1) P-271 P-272	1258 550 232	152.4	Ductile Iron Ductile Iron Ductile Iron	0 0.001 1.06	0 0 0.06	0.03
511	P-272 P-173 P-33(2)	232 124 187	152.4	Ductile Iron	7.26	0.06	12.21
522 900	P-177 P-151(2)(1)	526 845	100		8.48 5.451	1.08	16.28
534 535	P-117(2) P-179	996 60	100 100	Ductile Iron	-8.164 23.48	1.04 2.99	15.17 107.3
769	P-10(2)(1)(1)(1) P-201	1370 19	150	Ductile Iron Ductile Iron	22.04 16.2	1.25 0.92	13.25
754	P-200 P-198	21 13	400	Ductile Iron Ductile Iron	92.867 29.45	0.74	1.60
603	P-196 P-37(2)(2) P-187	46 885 26	250 150 150		18.013 43.868 -43.868	0.37 2.48 2.48	0.75 47.41 47.40
	P-48 P-40(1)	2589 3762	150	Ductile Iron Ductile Iron	30.001	1.7	23.45
967	P-195 P-4(1)(2)(2)(1)	10 1094	400 200	Ductile Iron	-94.258 180.712	0.75	1.65
683 970	P-194 P-21(2)(2)(1)(1)	252 1213	250 250		-214.998 214.998	4.38 4.38	74.76 74.76
643	P-6(2) P-106(2)	5	150 150	Ductile Iron Ductile Iron	10 10	0.57	3.05
646 655 658	P-10(2)(2) P-4(2)(2)(2) P-14(2)	6 5 7	150 150 150	Ductile Iron Ductile Iron Ductile Iron	19.6 56.764 28.42	1.11 3.21 1.61	10.66 76.43 21.20
661	P-114(2) P-27(2)	3	100	Ductile Iron Ductile Iron	10	1.01	22.08
667 676	P-29(2) P-12(2)(2)	3	250 200	Ductile Iron Ductile Iron	10 10	0.2	0.23
682	P-24(2) P-21(2)(2)(2)	5 4	200 250	Ductile Iron Ductile Iron	10 304.686	0.32 6.21	0.7 142.58
649 687 690	P-32(1)(2) P-42(2) P-83(2)	3	250 100 100	Ductile Iron Ductile Iron Ductile Iron	163.279 10 10	3.33 1.27 1.27	44.93 22.09 22.11
690 693 696	P-83(2) P-84(2) P-63(2)	5 7 4	100 100 150	Ductile Iron	10 10 10	1.27	22.11 22 3.05
699	P-64(2) P-85(2)	7	150		10 10	0.57	3.06
705 708	P-90(2) P-78(2)	8	100 200	Ductile Iron Ductile Iron	10 10	1.27 0.32	22.10 0.75
711 714	P-49(2) P-50(2)	6 6	150 150	Ductile Iron Ductile Iron	10 10	0.57 0.57	3.06 3.07
721	P-51(2) P-41(2)	8	150 100	Ductile Iron	10 10 11 85	0.57	3.07 22.09 3.85
727	P-39(2) P-38(2) P-148(2)(2)	8 9 9	152.4 100 150	Ductile Iron Ductile Iron Ductile Iron	11.85	1.51	30.27
734	P-47(2)(2) P-144(2)	13	150	Ductile Iron	2.383	0.13	0.21
740 743	P-44(2) P-20(2)(2)	4	150 150	Ductile Iron Ductile Iron	3.53 3.53	0.2	0.43
746 753	P-59(2) P-197	2 8	100 150	Ductile Iron Ductile Iron	10 -14.629	1.27 0.83	22.0 6.20
758	P-116(1)(1)(2) P-199 P-145(2)	1847 9 20	150 150 150	Ductile Iron Ductile Iron Ductile Iron	-14.629 14.629 3.04	0.83 0.83 0.17	6.20 6.19 0.33
765	P-145(2) P-53(2) P-16(1)(2)(2)	7	200	Ductile Iron Ductile Iron	-10 16.2	0.32	0.33
773 776	P-16(2)(2) P-35(2)	5 5	150 80	Ductile Iron Ductile Iron	16.2 0.5	0.92	7.51 0.24
783	P-18(2) P-203	16 29	150 100	Ductile Iron	10 4.41	0.57 0.56	3.06 4.85
786	P-204(1) P-205 P-206(1)	324 11 933	80 100	Ductile Iron Ductile Iron Ductile Iron	2 4.41 10	0.4 0.56 1.27	3.32 4.8 22
791	P-206(2) P-204(2)	5	100	Ductile Iron	10	1.27	22.09
799	P-65(2) P-210(1)	1763 1630	150 152.4		36.83 13.47	2.08	34.29
833 813	P-15(2)(2)(1) P-10(2)(1)(2)	710 1199	150		14.75 19.6	1.88 1.11	45.39 10.66
817	P-212(1) P-66(2)	750 441	100 150	Ductile Iron Ductile Iron	1.22 0.001	0.16	0.44
824	P-213 P-13(2) P-215	425 582 239	150	Ductile Iron Ductile Iron Ductile Iron	0.001 1.86 0	0.11	0.13
829	P-215 P-210(2) P-216	239 246 688	152.4 152.4 152.4	Ductile Iron	0 13.47 0	0.74	4.92
834 836	P-15(2)(2)(2) P-217	280 1839	100 80	Ductile Iron Ductile Iron	14.75 0.001	1.88	45.39
841 843	P-108(2) P-219	559 287	200 152.4	Ductile Iron Ductile Iron	11.69 0.001	0.37	1.00
848	P-105(2) P-220	192 736	100 152.4	Ductile Iron Ductile Iron	12.19 0	1.55	31.89
856	P-10(2)(1)(1)(2) P-222 P-32(2)(2)	1,506 363 926	150 152.4 250	Ductile Iron Ductile Iron Ductile Iron	20.82 1.22 153.278	1.18 0.07 3.12	11.92 0.05 39.95
861	P-32(2)(2) P-223 P-92(1)(2)	926 8 455	152.4 160	Ductile Iron Ductile Iron	0.002	0	00.00
866 869	P-224 P-26(2)(2)	52 2132	152.4 250	Ductile Iron Ductile Iron	0.001 10.001	0	0.25
871 878	P-225 P-227(2)	416 603	90 75	Ductile Iron Ductile Iron	0.001	0	
886	Pamtsho2_PC P-99(2)	824 17	63 200	Ductile Iron	6.09 12.58	1.95	83.73 1.15
	P-230 P-61(2) P-231	698 982 1007	90 150 90	Ductile Iron Ductile Iron Ductile Iron	0.001 14.5 0	0 0.82 0	6.10
896 898	P-57(2) P-232	61 17	150 152.4	Ductile Iron Ductile Iron	31.248 0.001	1.77	25.29
901 903	P-151(2)(2) P-233	578 197	150 90	Ductile Iron Ductile Iron	5.451 0	0.31	0.99
908	P-81(2) P-234	754 16	150 90	Ductile Iron	30 0	1.7	23.45
915	P-160(2) P-236	1,690 31	100	Ductile Iron Ductile Iron	8.39 0	1.07	15.96
920 927 929	P-75(2)(2) P-66(1)(2) P-240	56 79 88	100 150 152 4	Ductile Iron Ductile Iron Ductile Iron	0 0.001 0.001	0 0	
932	P-240 P-67(2)(2) P-241	88 1944 74	100		0.001 -10.901 0	0 1.39 0	25.9
945	P-241 P-244 P-212(2)(1)	/4 9 110	152.4 152.4 100		0 1.22 0	0.07	0.0
944 949	P-221(2) P-246	129 105	90 80	Ductile Iron Ductile Iron	1.22	0.19	0.75
951 991	P-247 P-259	1050 1294	80 152.4	Ductile Iron Ductile Iron	3.7 0.001	0.74	10.39
955	P-249 P-250	172 1182	80 80	Ductile Iron Ductile Iron	5.48 5.48	1.09	21.5
	P-251	401 2965	80 200	Ductile Iron Ductile Iron	-10.96 91.024	2.18 2.9	77.65
958 968	P-4(1)(2)(2)(2) P-254			Ductile Inc.	20 000		27 07
958 968 972 971	P-4(1)(2)(2)(2) P-254 P-21(2)(2)(1)(2) P-26(1)(2)	2965 1072 730 323	200 200 250 250	Ductile Iron Ductile Iron Ductile Iron	89.688 304.687 173.28	2.85 6.21 3.53	37.85 142 50.14

986 P-117(1)(2) 797 100 Ductile Iron 15.316 1.95	48.674
993 P-260 305 152.4 Ductile Iron 0.001 0	0
995 P-261 237 152.4 Ductile Iron 0.001 0	0
1005 P-267 1050 80 Ductile Iron 0.001 0	0
1007 P-268 538 80 Ductile Iron 0.001 0	0
1013 P-270 6 152.4 Ductile Iron 13.78 0.76	4.432
1019 P-264(2)(1) 840 250 Ductile Iron 3.04 0.06	0.028
1020 P-264(2)(2) 23 200 Ductile Iron 3.04 0.1	0.084
627 P-190 61 200 Ductile Iron 180.712 5.75	160.7

Appendix E

Begana-Rama Trunk Main Calculations

Thimphu Water Services Masterplan
289551-00
OVT
LZ
08/06/2023
Begana Rama trunkmain high level hydraulic assessment
Sheet number prefix
Member/Location
Drawing reference
Filename

Contents of Spreadsheet

Sheet	Description
Cover	Cover page
Notes	Notes, assumptions and basis of calculations
Hydraulic design	Design flow and hydraulic design calculations
Supply pressure assessment	High level assessment for DMA supply pressure from proposed trunk main
Community supply press	High level assessment for Community supply DMA supply pressure from proposed trunk main

Authorisation of latest version

Type and method of check

Signatures & dates:

Made by

Checked

Revisio	Revisions Current Revision		t Revision	
Rev.	Date	Made by	Checked	Description
P01	08/06/2023	OVT	LZ	High level hydraulic calculations for strategic trunk mains

(1) Purpose of spreadsheet

Begana Rama trunk main high level hydraulic assessment

(2) Key Assumptions

- 1 Top Water Level of the existing Taba tank considered as trunkmain initial head
- 2 Pipeline to follow utility corrridor
- 3 Ductile iron pipe used (roughness coefficient= 120)
- 4 For each area considered in the flow breakdown, the unit head loss is considered constant in the trunk main portion
- 5 From the end of the Rama DMA onwards, there are no more head losses

(3) Basis of calculations

- 1 Hazen Williams Equation for headloss calculations
- 2 The derived hydraulic grade line was used to assess the adequacy of supply pressure to the existing DMAs

(4) Sources of data & Links to other spreadsheets

Date	File path / URL	Description

(5) Special features

(6) Diary of development, including checking

(if supplement is needed to Cover page)

Date	Who	Description

Best Practice Guide

- 1. Don't duplicate raw data in the spreadsheet i.e. use cell references where possible.
- 2. Use colours to distinguish between fixed data, user-variable data, calculations and results.
- 3. Explicitly define constants to be used in equations, using named cells where appropriate.
- 4. Avoid password use unless essential and documented (to avoid loss of work with loss of password).
- 5. Ensure extracts copied to other documents can be traced back to the spreadsheet.
- 6. Plot to engineering scale whenever sensible to do so, and make units obvious.
- 7. For charts, use colours/patterns which will be distinguishable if printed or photocopied in black & white.
- 8. Give sheets & workbooks descriptive names.
- 9. Use comments to describe the purpose of individual cells and ranges of cells.
- 10. Use the revision facility on the cover page and maintain the diary where further details required.

Methodology

A1

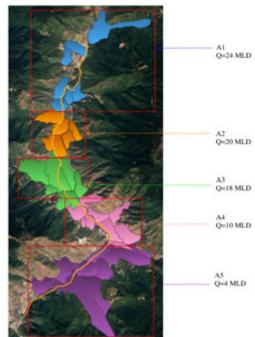
A2

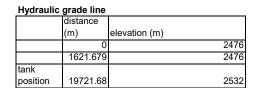
A3

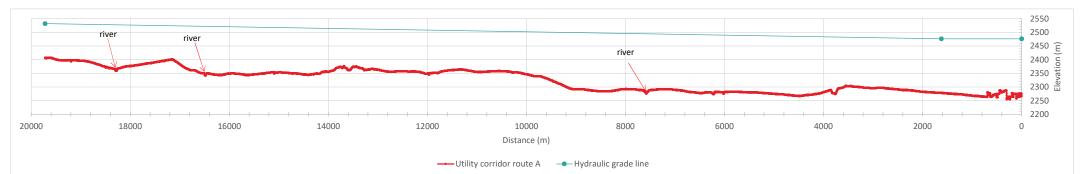
1. Design flow calculated for each demand area.

2. Hydraulic design using H-W equation to limit pipeline velocity to less than 1m/s

Besign included sections of two or three parallel pipelines for greater system resiliency.
 The total head loss along the utility corridor determined the hydraulic grade line slope.


Table 1: Design flow calculation for each demand area Current 2047 Dema 032 Dem Demand area DMA Demand MLD ALD. MLD Community Supply 0.566 0.429 0.306 Dangrina left and 0.828 0.759 0.684 right 0.908 0.804 0.825 Dangrina propose Pamtsho 1 0.383 0.562 0.571 0.762 0.525 0.504 Pamtsho 2 0.053 0.041 atellite town 0.040 aba Lower 0.873 0.593 0.521 0.658 0.683 0.601 Taba Upper 1.000 0.927 0.844 Babena 1 Hejo and Kawajangsa 0.455 0.470 0.418 Kawajangsa and Zilukha 0.471 0.360 0.264 Lango Residents 1 0.591 0.234 0.208 Lango Residents 2 0.067 0.246 0.221 0.036 0.026 lukha 0.025 0.207 0.281 0.300 Above RICB 1.003 1.149 0.964 Changdelo Changedaphu and Upper 1.667 Changzamtok 2.047 2.029 Norzin Wog 0.805 1.425 1.358 1.661 1.440 1.559 Town Area 1 1.005 1.077 1.043 Town Area 2 Upper Motihang 2.230 1.753 1.354 0.532 0.668 0.547 YHS Residents 0.705 0.349 Bangdu area (left) 0.301 0.147 0.187 Bangdu Residents 0.153 1.439 1.101 0.890 Changiji Residents 0.945 0.591 0.454 Changiji 2 Changzamtog 1.883 1.403 1.213 Lubding 0.274 0.455 0.365 2.349 2.040 1.597 Olakha 1


	YHS 2	0.213	0.192	0.183
A4	Workshop	0.442	0.280	0.224
	Above old highway	0.845	0.555	0.505
	Babesa Left	1.399	1.111	0.969
	Babesa Right	0.904	0.646	0.544
	Debsi	0.378	0.249	0.611
	Gangchey			
	Nyezergang	0.491	0.411	0.351
	Olakha 2	0.236	0.096	0.077
	Rama	-	-	0.558
	Serbithang	0.205	0.129	0.101
	Simtoka E4	0.214	0.303	0.242
	Simtoka Upper 1	0.237	0.150	0.120
A5	Simtoka Upper 2	0.363	0.258	0.200
			total	24.438


Table 2: Hydraulic design

Demand area	Area demand (MLD)	Total pipes flows (MLD)	Total pipes flows (LS)	D1 (mm)	D2 (mm)	D3 (mm)	v (m/s)	Unitary headloss (m/km)	Length (m)	Headloss (m)
			-							
A1	4.13	24	283	450	450		0.89	1.98	4,525	9
A2	1.98	20	235	400	400		0.94	2.49	2,310	6
A3	8.67	18	212	300	300	300	1.00	3.94	3,477	14
A4	5.38	10	112	300	300		0.79	2.56	2,940	8
A5	4.28	4	50	200	200		0.79	4.14	4,830	20
								total	18,082	56

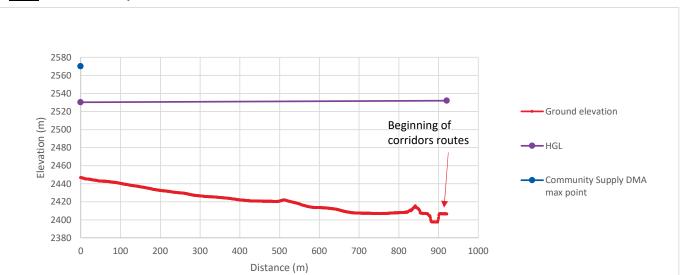
Plan and profile of Begana Rama trunkmain Title:

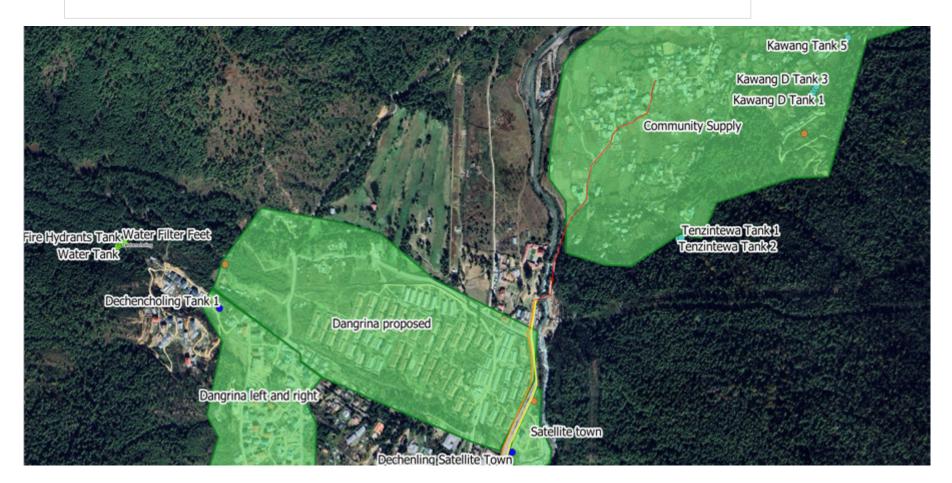
Comment: High headloss in area A5

slope	0.003
intercept	2471

Methodology

HGL compared with each DMA highest point (pressure critical) to assess hydraulic feasibility of supplying from the trunk main with no pumping.


DMA	Location on the trunkma	Abscisse (m) l	Highest point elevation (m) F	IGL (m) _ F	Result	Minimum pumping head required (m)
Above old highway	14771	5229	2390	2487 c	ok	-
Above RICB	9095	10905	2540	2505 <mark>i</mark> r	nsufficient pressure	35
Babena 1	4963	15037	2460	2518 c		-
Babesa Left	14472	5528	2310	2488 c	ok	-
Babesa Right	15446	4554	2330	2485 c	ok	-
Bangdu area (left)	11977	8023	2410	2496 c		-
Bangdu Residents	11492	8508	2430	2497 c		-
Changdelo	9222	10778	2350	2504 c		-
Changedaphu and Upper Changzamtok	9909	10091	2480	2502 c		-
Changiji Residents	11926.4	8074	2390	2496 c		-
Changjiji 2	10533	9467	2590		nsufficient pressure	90
Changzamtog	11164	8836	2490	2498 c		-
Dangrina left and right	136	19864	2520	2532 c		-
Dangrina proposed	85	19915	2520	2533 c		-
Debsi	15446	4554	2480	2485 c		-
Gangchey Nyezergang	16070	3930	2640		nsufficient pressure	157
Hejo and Kawajangsa	5466	14534	2420	2516 c		-
Kawajangsa and Zilukha	6431.3	13569	2450	2513 c		-
Lango Residents 1	6232	13768	2390	2514 c		-
Lango Residents 2	6232	13768	2410	2514 c		-
Lubding	12422	7578	2620		nsufficient pressure	126
Norzin Wog	7726	12274	2350	2509 c		-
Olakha 1	12140	7860	2370	2495 c		-
Olakha 2	13100	6900	2390	2492 c		-
Pamtsho 1	2270	17730	2560		nsufficient pressure	34
Pamtsho 2	4236	15764	2470	2520 c		-
Rama	17707	2293	2380	2478 c		-
Satellite town	350	19650	2390	2532 c		-
Serbithang	15670	4330	2630		nsufficient pressure	146
Simoka Upper 1	13726	6274	2470	2490 c		-
Simtoka E4	13365	6635	2500		nsufficient pressure	8
Simtoka upper 2	14472	5528	2540		nsufficient pressure	52
Taba Lower	3778	16222	2400	2521 c		-
Taba Upper	3778	16222	2500	2521 c		-
Town Area 1	8016	11984	2440	2508 c		-
Town Area 2	8179	11821	2360	2508 c		-
Upper Motihang	8016	11984	2590		nsufficient pressure	82
Workshop	13125	6875	2310	2492 c		-
YHS Residents	9095	10905	2410	2505 c		
YHS2	9553	10447	2520	2503 <mark>i</mark> i	nsufficient pressure	17
Zilukha	6309	13691	2355	2513 c	ok	-


Methodology

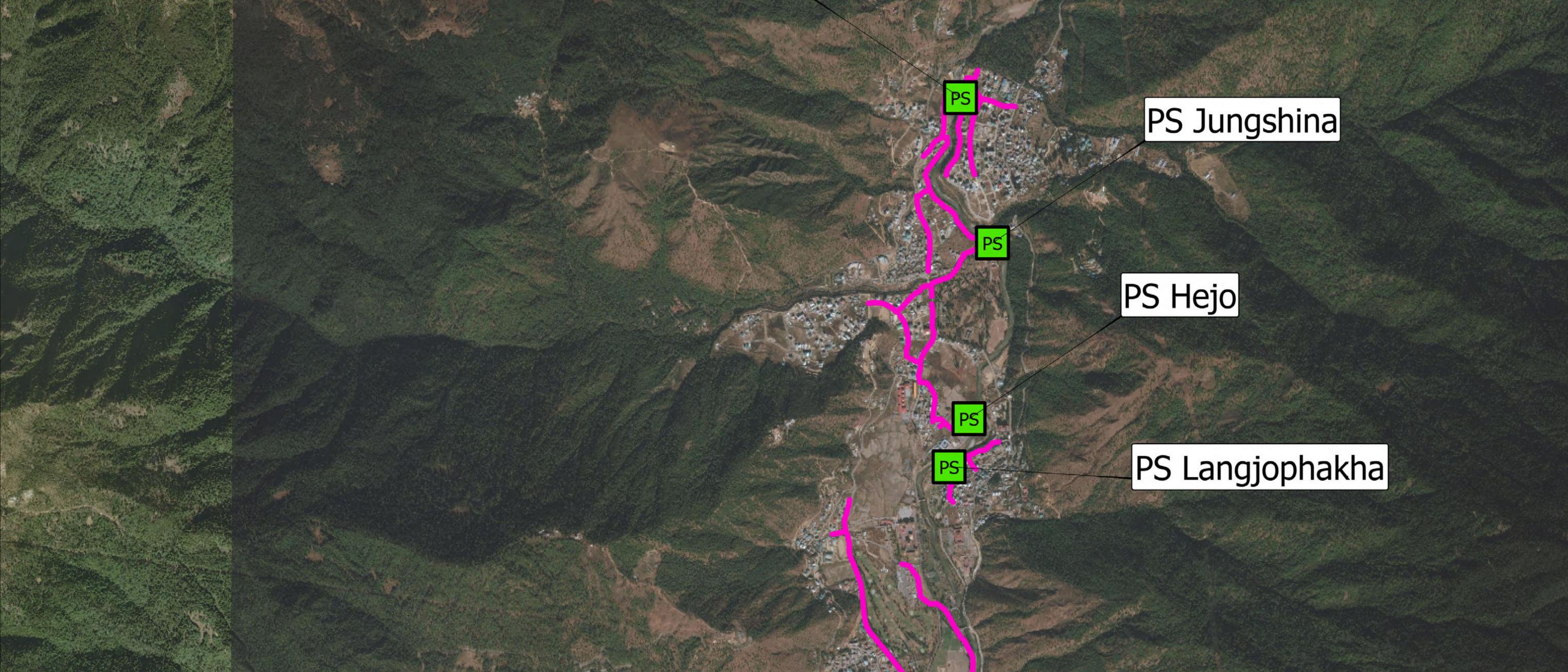
- 1. Calculation of hydraulic gradeline from upstream of corridor (Taba Tanks) to Community supply
- 2. HGL vs Ex. Ground level to assess hydraulic feasibility of supplying by gravity

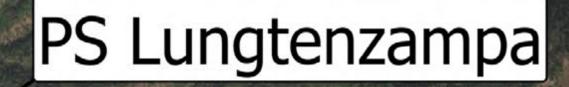
Distance (m)	HGL (m)	Community supply max point (m)	Minimum head needed (m)
0	2530	2570	40
921.0247102	2532		

Title: Plan and profile view of the corridor extended route

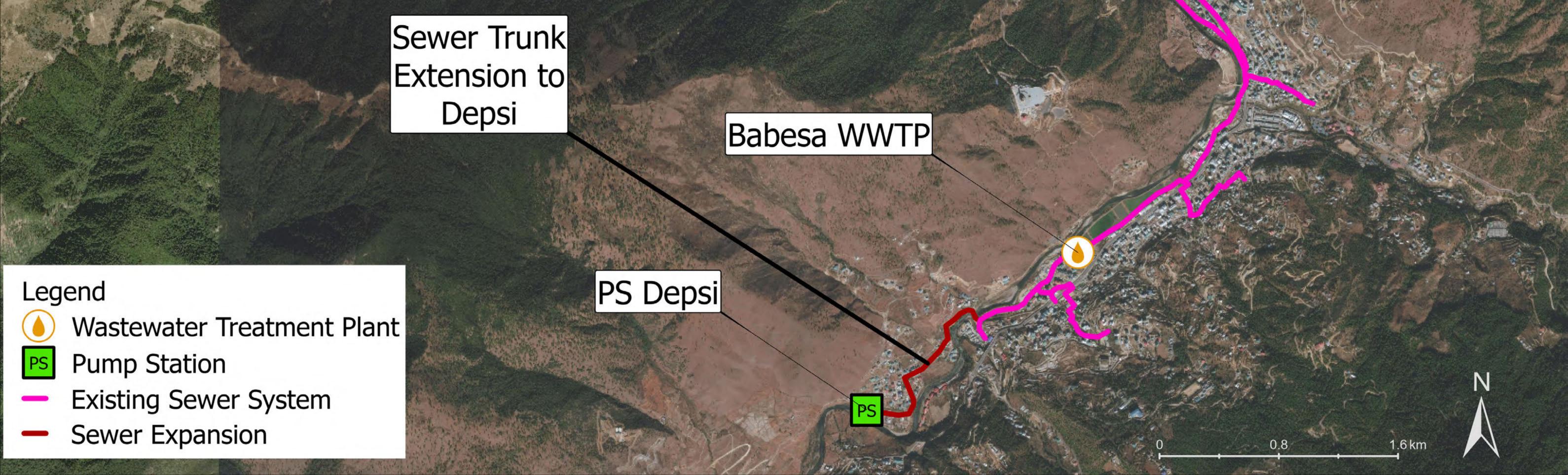
Conclusion

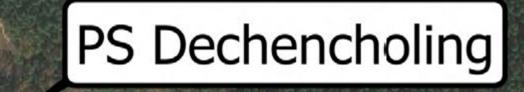
HGL at highest elevation = 2530 mAOD and EGL = 2570 mAOD. Therefore system unable to supply high elevation properties without pumping. There is sufficient head to supply low elevation properties.


Appendix F Wastewater Supply Maps

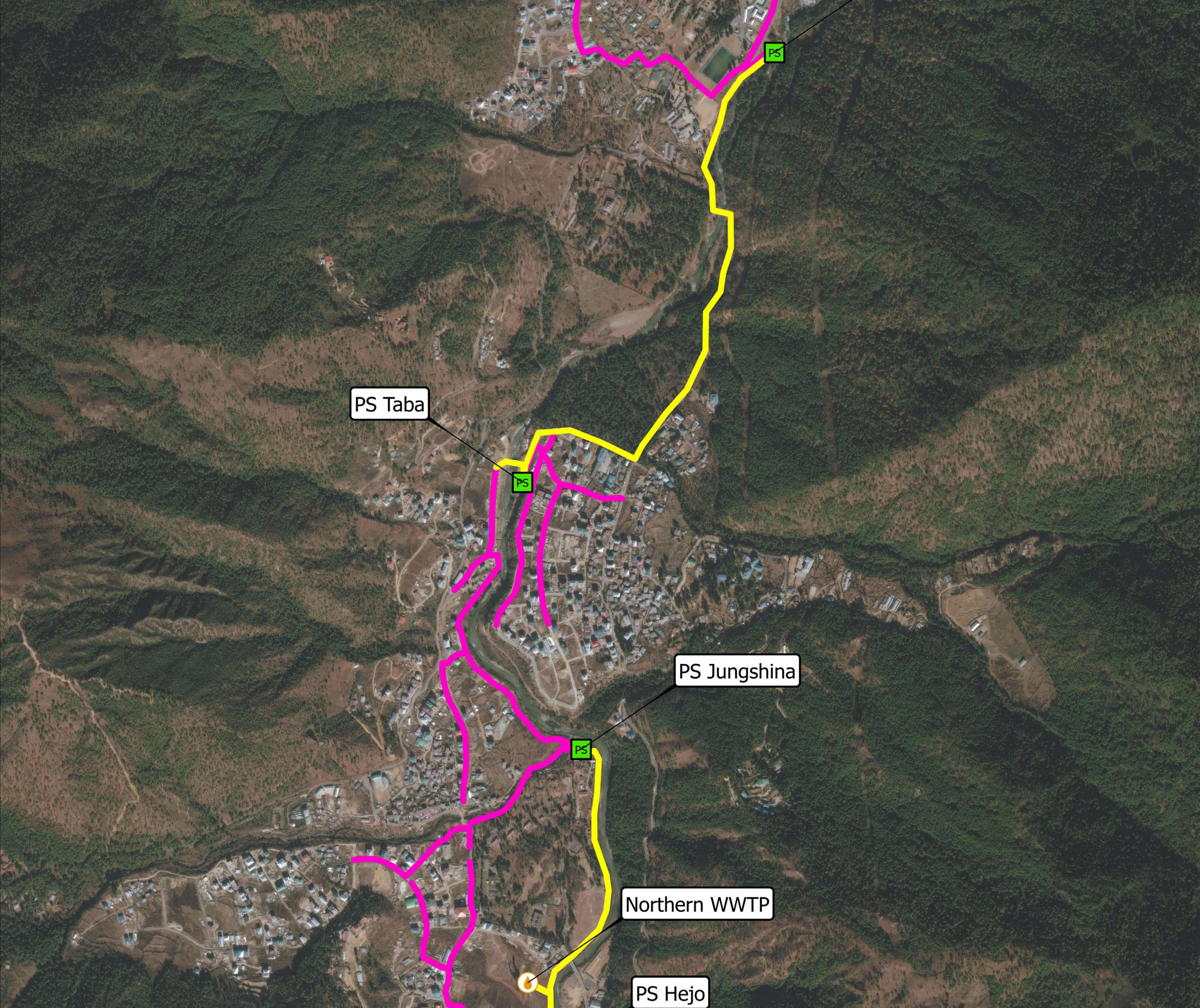

Sewer Trunk Extension to Kabesa

PS





Sewer Trunk Extension to Royal Bhutan Army



N

0.6 km

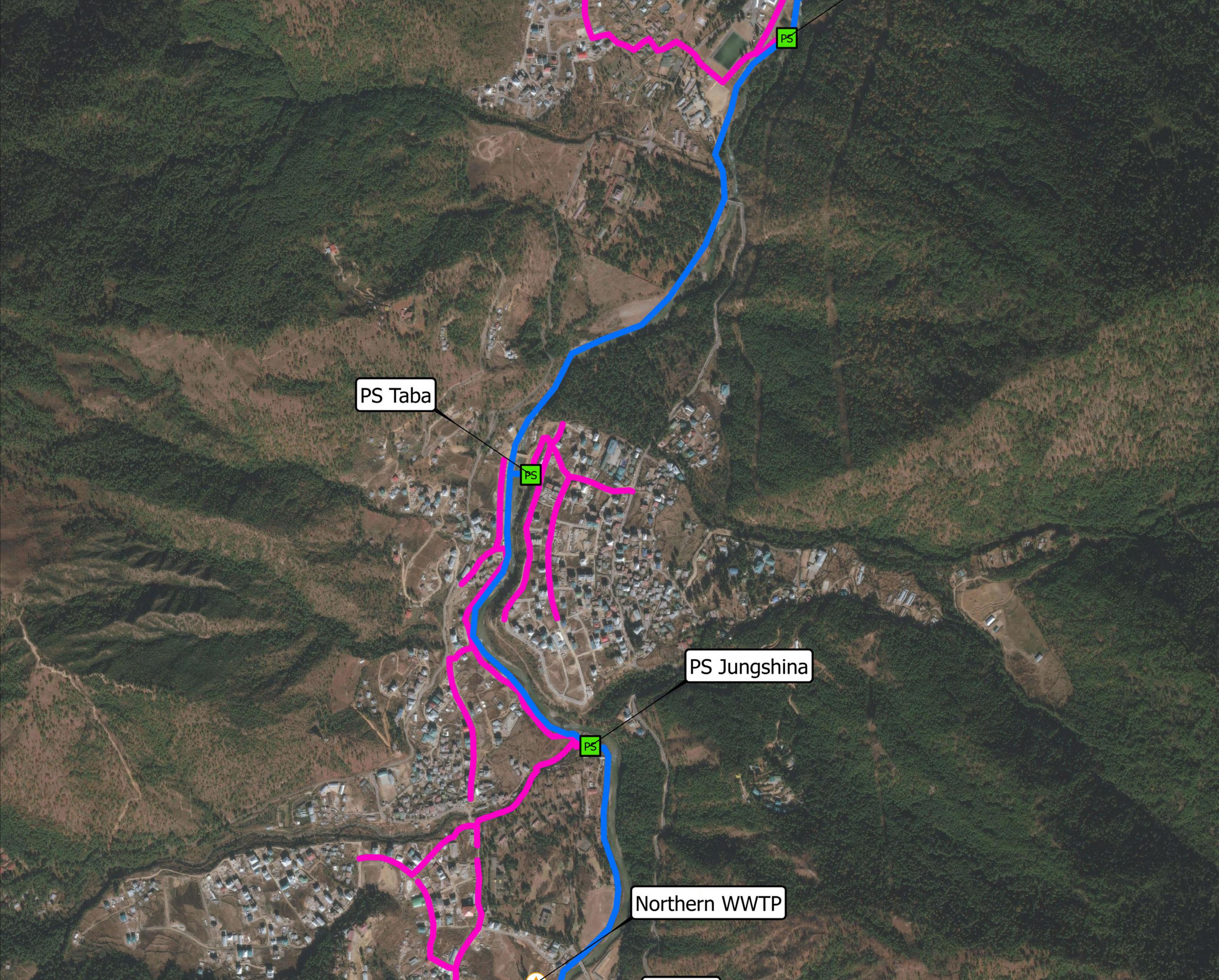
0.3

TITT

PS Langjophakha

Legend Wastewater Treatment Plant Pump Station

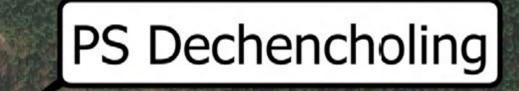
Existing Sewer System
 New Sewer Pipes


TITT

N

0.6 km

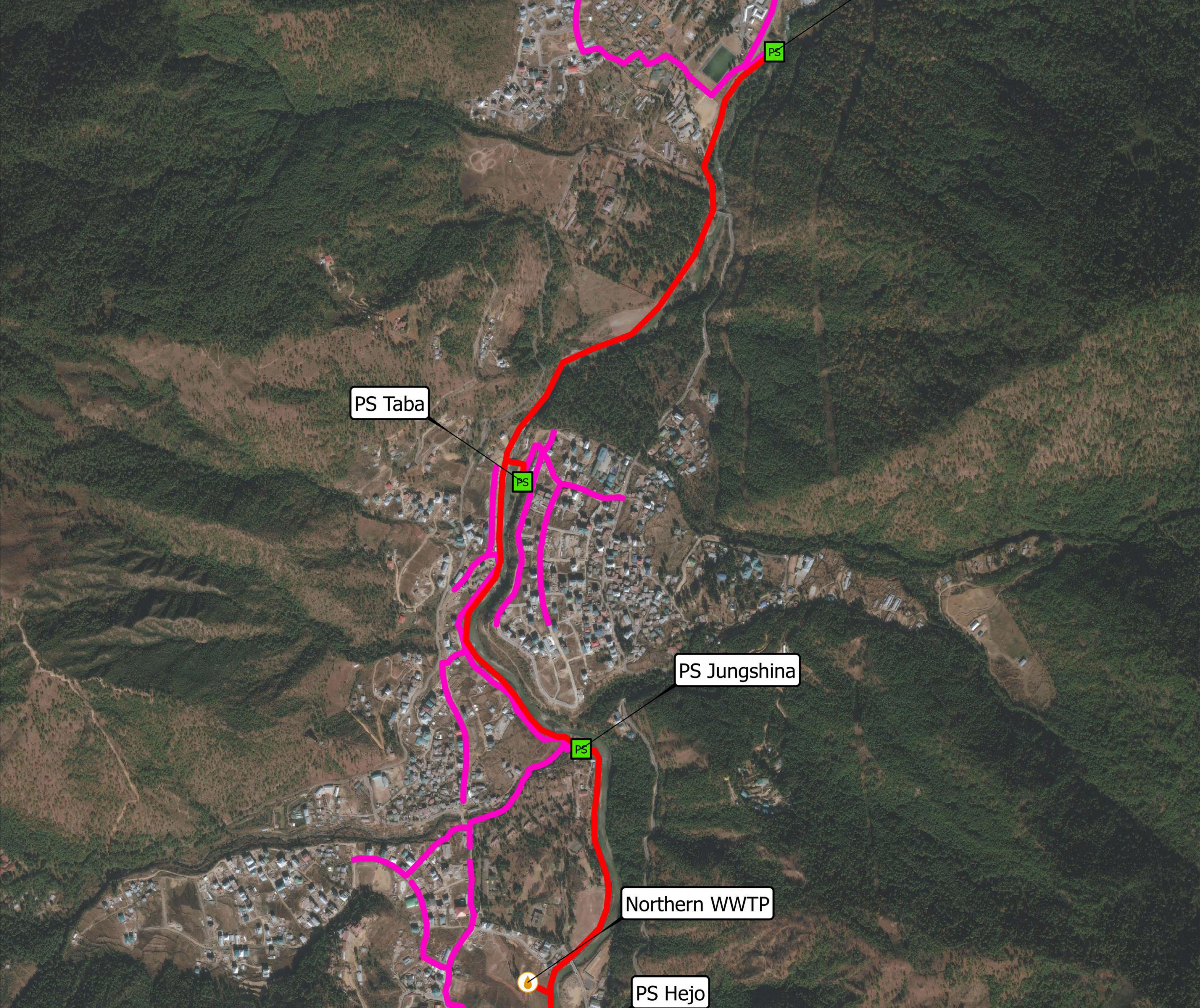
0.3


PS Langjophakha

Legend Wastewater Treatment Plant Pump Station

Existing Sewer System

New Sewer Pipes



N

0.6 km

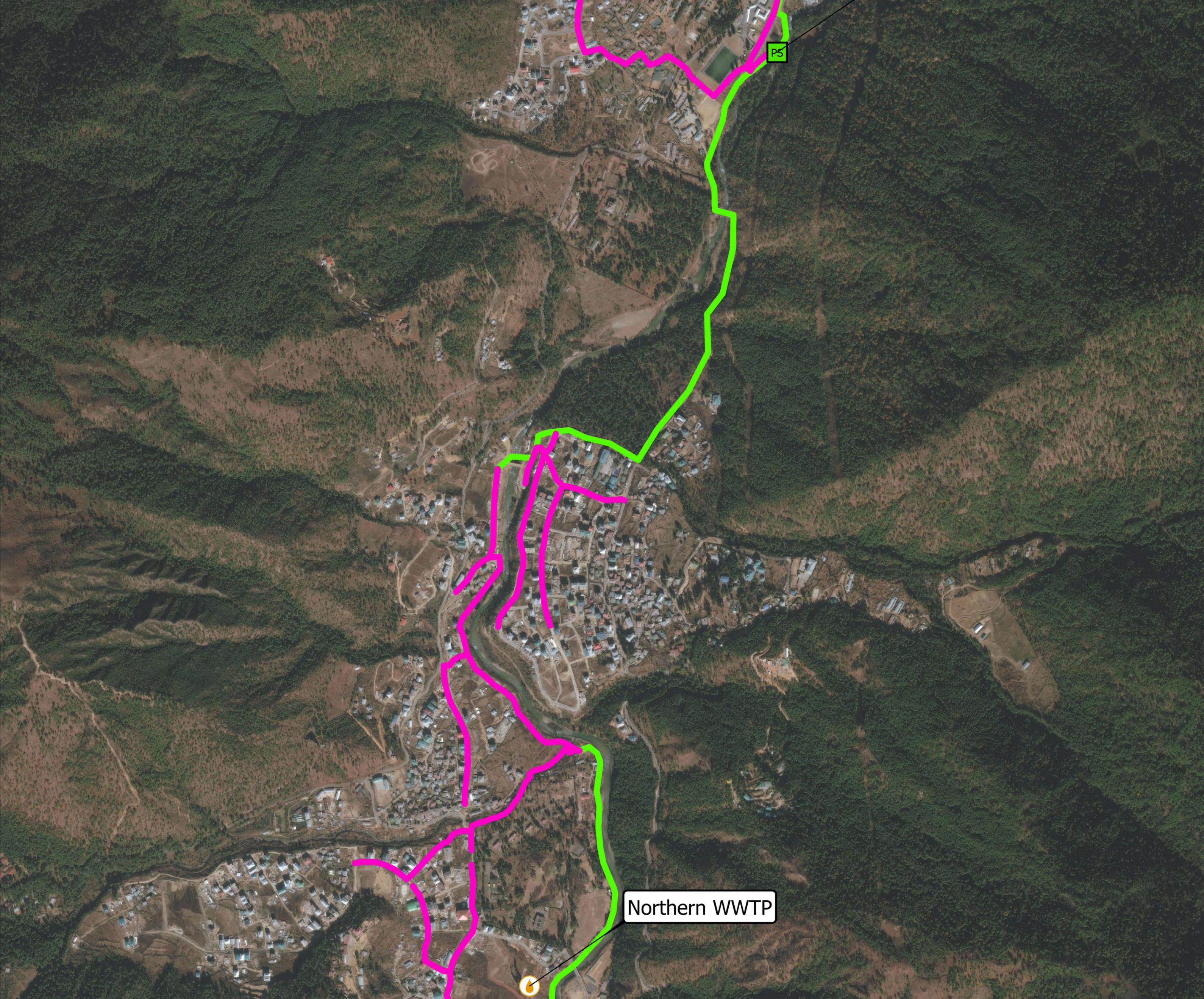
0.3

TIT

PS Langjophakha

Legend Wastewater Treatment Plant Pump Station

Existing Sewer System


New Sewer Pipes

N

0.6 km

0.3

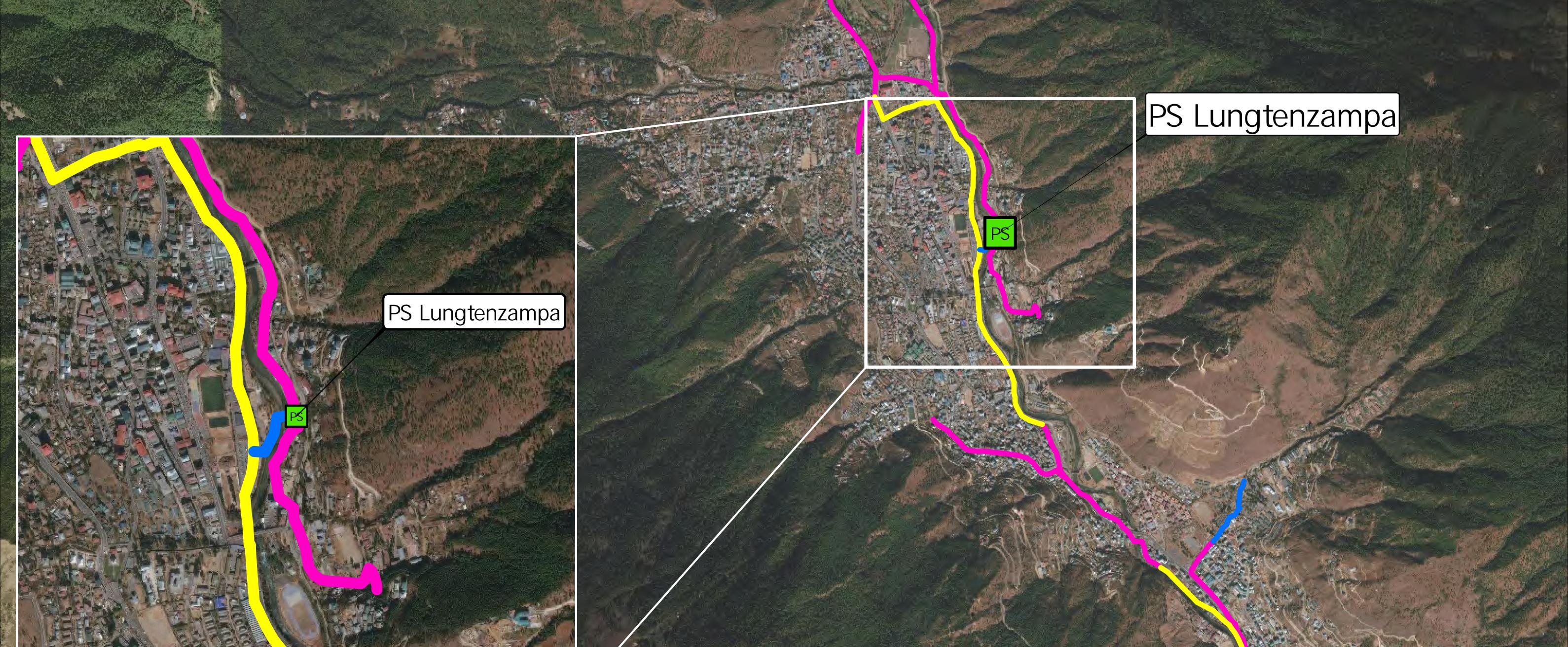
TIT

PS Langjophakha

Legend Wastewater Treatment Plant Pump Station

Existing Sewer System

New Sewer Pipes


PS Dechencholing

1.6 km

0.8

PS Langjophakha

Babesa WWTP

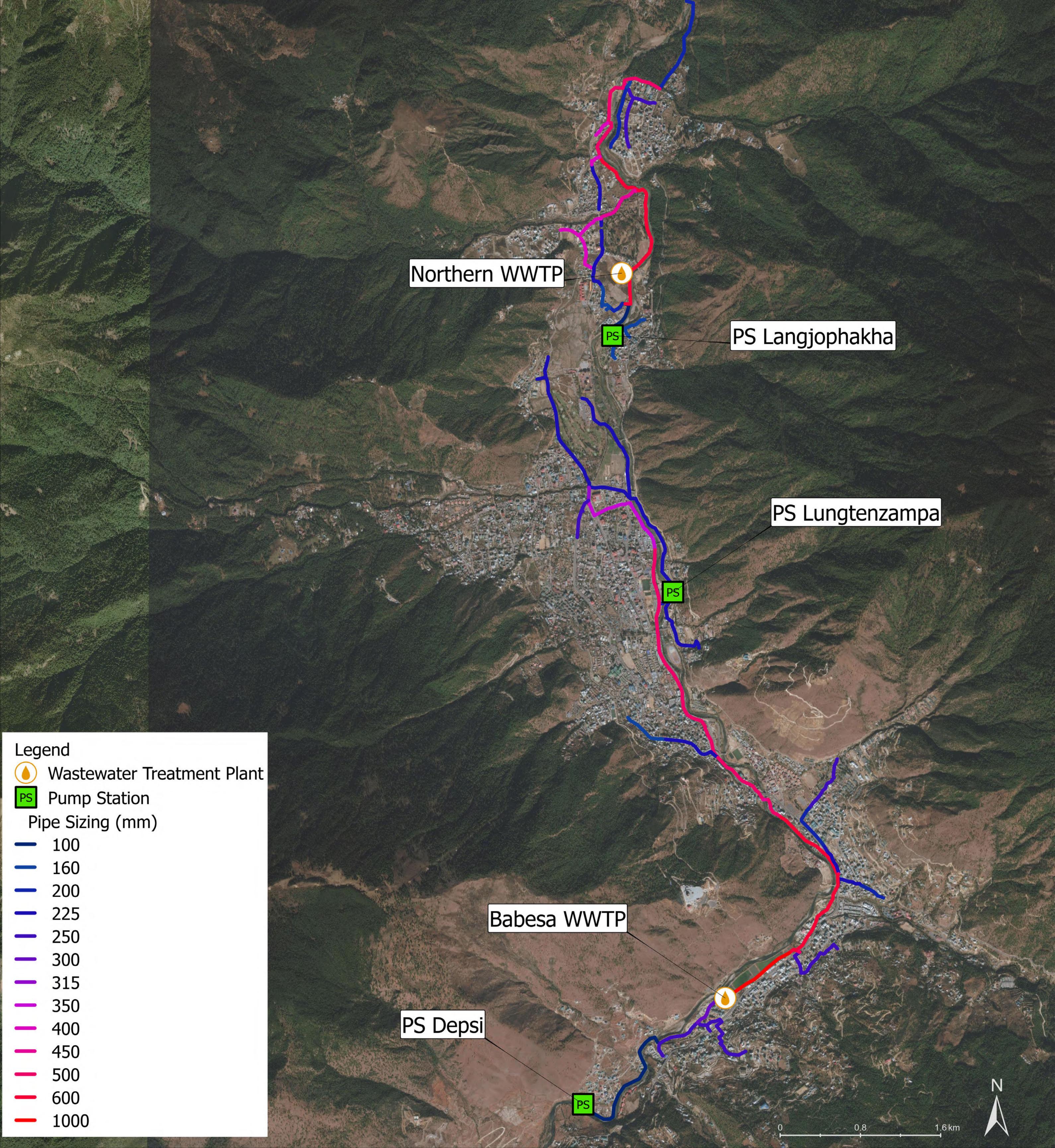

- Legend Wastewater Treatment Plant Ps Pump Station
- Existing Sewers
- Phase 1 Upgrades
- Phase 2 Upgrades
- Phase 2 New Sewers

Figure 5-7: Sewer Network Sizing for Design Year 2047

PS Dechencholing

PS

PS Dechencholing

PS

PS

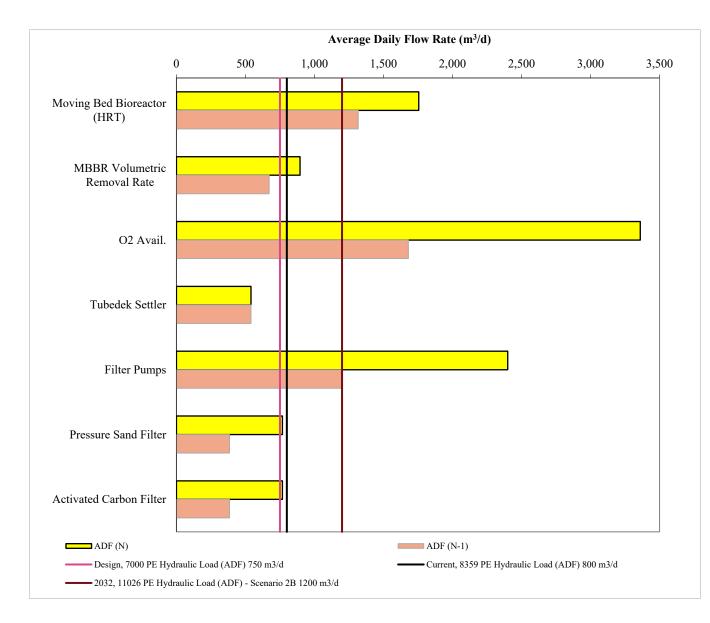
PS Langjophakha

Appendix G

Upgrades to Existing WWTPs

Wastewater Treatment Plants

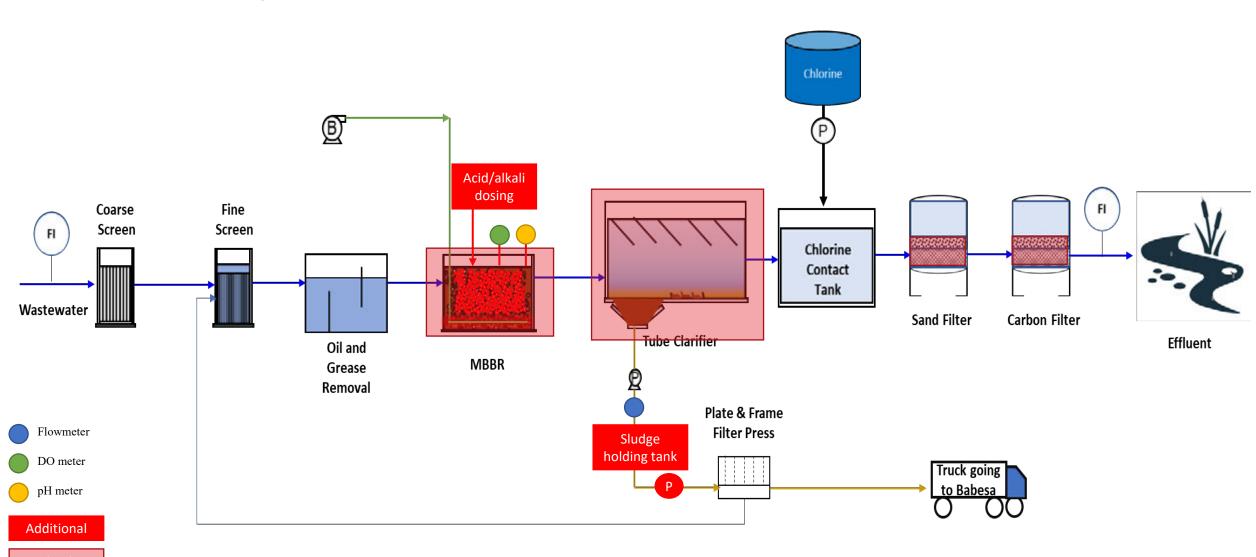
WWTP	Operational	Capable to Run until 2032 2B
Dechencholing	Х	Х
Taba	\checkmark	Х
Jungshina	Х	Х
Langjophakha	\checkmark	\checkmark
Lungtenzampa	Х	\checkmark
Babesa	\checkmark	Х


Dechencholing WWTP

Design Capacity: 0.75 MLD

Current Capacity: 107% of design capacity

General Remarks:


- Insufficient capacity to cater 2032 flow
- Not operational since 2019/2020

Dechencholing WWTP

Recommended Upgrades

Dechencholing WWTP

Design Capacity: 0.75 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
 Plant is not functional due to multiple mechanical failures. In 2032, mechanical components will reach their design life (2027) 	 It is not operational for almost three years. Assumed that the mechanical components were not changed and started to run on 	Further assess each equipment not functioning as per design specification or process which has mechanical failure and provide a service report.	HIGH
	2012	Consider checking the electrical line cable, instrumentation, and pipeline if still in good condition that there is leak/damage and clogging.	HIGH
		Refurbish/replace all the equipment that cannot be recovered based on the service report/assessment to ensure compliance.	MEDIUM
		Establish regular preventive maintenance program plan for all equipment	LOW
 Possible clogging in diffusers Reached its design life (2017) 	 Water is much lower than the diffusers which solid may already accumulated. Assumed that the diffusers were not changed since the plant was constructed on 2012 	Replacement of the diffusers	HIGH

Dechencholing WWTP

Design Capacity: 0.75 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
 Possible insufficient quantities/specific surface area of media Possible degradation of media 	Long time of being shut down	Assess the condition of media as well its total amount.	HIGH
		If the amount of media present in the tank is already insufficient based on the investigation, replenish up to design volume of the media	MEDIUM
		If the media can still recover, it needs to wash out or clean the media by removing the sludge. If not, it needs to be replaced.	MEDIUM
Possible toxic gases (i.e. hydrogen sulphide) are produced in the aeration chamber	 No air in the biological treatment led to growth of anaerobic bacteria Discoloration of wastewater into black 	Have a safety plan before recommissioning it	MEDIUM
 Insufficient capacity of MBBR No alkali/acid dosing 	 60 g PE/d 4 hrs HRT 1.7 kg/m³/d 	Further investigate the performance of the processes in terms of BOD removal once the plant is running while assuring the operating conditions are met like its target pH and dissolved oxygen (DO).	HIGH
		Provide an alkali/acid dosing.	HIGH
		If it is not reaching its effluent BOD quality, provide additional media	MEDIUM
		If it is not reaching its effluent BOD quality, increase the air flow if possible.	MEDIUM
		If above is still not achieving its target or it is not possible, consider add a unit of MBBR	LOW

Dechencholing WWTP

Design Capacity: 0.75 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Insufficient capacity of Tubedek Settler	 1 unit of Tubedek Settler 2.5 m³/m²/h 	Further investigate the TSS before and after the settler. If possible, revisit the settler's design.	HIGH
		If the efficiency of the settler is less than the design removal percentage, consider check if its possible to change the configuration of settler like the slope in order to increase the settling area.	MEDIUM
		If above is still not achieving its target or it is not possible, consider adding one unit of the settler especially there is no additional unit that can handle the flow if this chamber is in downtime	LOW
		Have a frequent preventive maintenance of the unit to ensure the continuity of services	MEDIUM
 Missing media inside the filters Reached the design life (2022) of activated carbon Insufficient capacity of Sand and Activated Carbon Filters 	 Based on the discussion with the client. Activated carbon media has typical design life of 10 years only Capacity of 16 m³/hr 	Further assess it by checking the size of the filter vessels as well as the plan on how to add the filter media to identify if it's worth salvaging.	HIGH
		If the size of the vessels are still suitable, replace only the media specially the activated carbon. On the other hand, replace whole units if it's not worth recovering them.	HIGH
 Insufficient to no historical data for all parameters required in effluent No influent quality data 	Only effluent's turbidity and pH data received	Develop a sampling plan and testing procedure for internal and third- party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality.	HIGH
		Influent characteristics should be established so that it could be used as a basis in constructing a centralized WWTPs	MEDIUM

Dechencholing WWTP

Design Capacity: 0.75 MLD

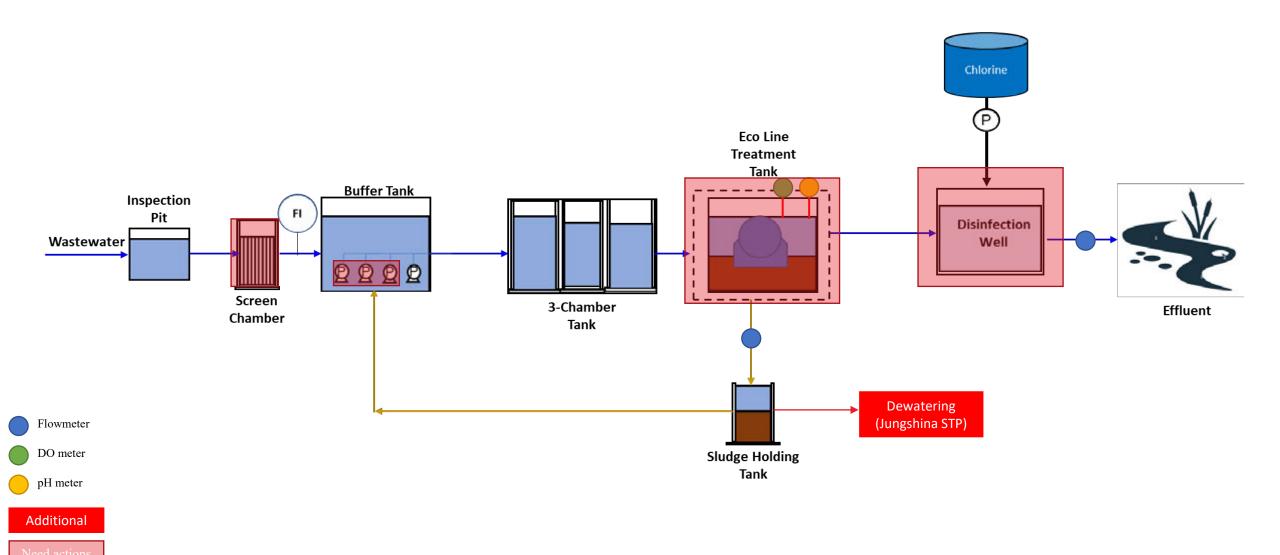
Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Possible no sludge holding tank	Sludge holding tank is required since the treatment used for dewatering sludge is plate and frame filter press, which is a batch process. The sludge holding tank should be	Check if there's a sludge holding tank before subjecting it to the plate and frame filter press and its capacity if its has enough storage time to hold the sludge when it cannot be feed the sludge in plate and frame filter press	HIGH
	able to store the sludge for a certain time.	If there's none, provide a sludge holding tank with sufficient capacity.	MEDIUM
Have no removal for biological nutrient.	• MBBR requires longer aeration time with suitable pH of wastewater for nitrification.	Investigate if the capacity of the aeration tank is enough to further nitrify the wastewater to reach its target quality.	MEDIUM
	 There is no anoxic tank for denitrification. No anaerobic or chemical treatment to remove phosphorus. 	 If the existing tank is not enough for nitrification, consider exploring possible options to remove the ammonia up to its target quality such as the following: Addition unit for the MBBR tanks and other auxiliaries like blower and provide an alkali/acid dosing Addition of biological aerated filter Addition of clay-based filter that can adsorb ammonia May retrofit it with other secondary treatment technologies like Step-feed, SBR, MLE. 	MEDIUM
		Investigate if the existing component of the plant can biodegrade the phosphorus of the wastewater up to its target effluent quality.	LOW
		If not, provide a chemical (metal salts or polymer e.g. $FeCl_3$ or PAC) that can precipitate the phosphorus and examine if the existing setter is suitable to efficiently remove the precipitates. If not, consider to add another unit of settler.	LOW

Dechencholing WWTP Design Capacity: 0.75 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Odor nuisance in WWTPs	No odor control unit	Provide a good ventilation and OCU in the treatment plant since the plant has nearby school	LOW
		Consider adding a trash bin with the lid and have a proper disposal method for the screenings.	LOW
Possible difficulty in operating the plant	No SCADA and other instruments.	Install online pH and DO analysers, and the associated SCADA control and monitoring.	LOW
No enough skilled personnel (i.e. Plant Manager, Process Engineer or Electro- mechanical Engineer)		Provide this skilled personnel to ensure the continuous operation of the plant as well as be certain that the effluent is conforming to the standard.	LOW
No operation and maintenance manual.	Assume there is no O&M manual or incomplete information	 Develop an operation and maintenance manual that comprised of the standard procedures of operating and maintaining each equipment/process with health and safety measures. It also includes the following: Detailed Design Criteria; Process controls monitoring system; Emergency operations plan and troubleshooting; Schedule of routine inspection and preventive maintenance; Sampling and/or water quality monitoring plan; Inventory of equipment, chemicals and other supplies needed; and Safe handling, storing and proper disposal of chemicals used. 	MEDIUM

Taba WWTP Design Capacity: 1 MLD

Current Capacity: 108% of design capacity


General Remarks:

- Hydraulic and Biological assessment not done due to missing information
- Design capacity is insufficient to cater 2032 flow.

Taba WWTP

Recommended Upgrades

Taba WWTP Design Capacity: 1 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Screens are hydraulically overloaded	 Current capacity is already exceeding the plant's design capacity. Failure of some downstream pumps; only one pump is operational. Based on the picture, the water level is 	 Further investigate the influent TSS, effluent TSS and operation condition. Evaluate the removal efficiency and check if the solids are accumulated on the chambers that can affect the equipment downstream. 	HIGH
	almost reaching the possible allowable freeboard.	If it is already insufficient, consider add a unit of screens.	MEDIUM MEDIUM HIGH
		Have a frequent maintenance of the screens in order not to accumulate the solids.	MEDIUM
3 out of 4 pumps are not working	Based on the discussion with the client	Prepare a service report to assess the condition of each pump if its functioning according to its specification.	HIGH
		If the pumps are not recoverable, replace the damaged pumps	MEDIUM
		Check the capacity of each pumps if there are still capable to transfer the wastewater from the main tank to the eco-line unit with the 2032 flow.	MEDIUM
		If the capacity of each pumps are insufficient to cater 2032 flow, consider add unit or replace the unit with a higher capacity.	MEDIUM

Taba WWTP Design Capacity: 1 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Insufficient design capacity of eco-line by 136% for 2032	0.5 MLD x 2 train of Eco-line	Further assess the performance of the processes in terms of BOD removal once the plant is running while assuring the operating conditions are met like its target pH and dissolved oxygen (DO).	HIGH
		If it is not reaching its target quality due to pH, add an alkali/acid dosing.	MEDIUM
		If it is not reaching its target quality due to DO, check the capacity of the blower. If it is already insufficient, then additional blower should be considered.	MEDIUM
		If it is still not reaching its target quality, consider add another train of eco-line.	MEDIUM
Insufficient disinfection well	Only 2min of contact time	Investigate the effluent's fecal coliform.	HIGH
		Increase the disinfection dosage if the fecal coliform is not reduced up to its required value.	MEDIUM
		If the fecal coliform is still not meeting its standard, increase the contact time of disinfection well by extending the disinfection well or build another unit with sufficient capacity.	MEDIUM
		If it cannot be done, it can consider used ultraviolet unit if it is fit in the well.	MEDIUM
Possible difficulty in operating the plant	No SCADA and online instruments such as pH, DO, TSS analyzers.	Install online pH and DO analysers, and the associated SCADA control and monitoring.	LOW

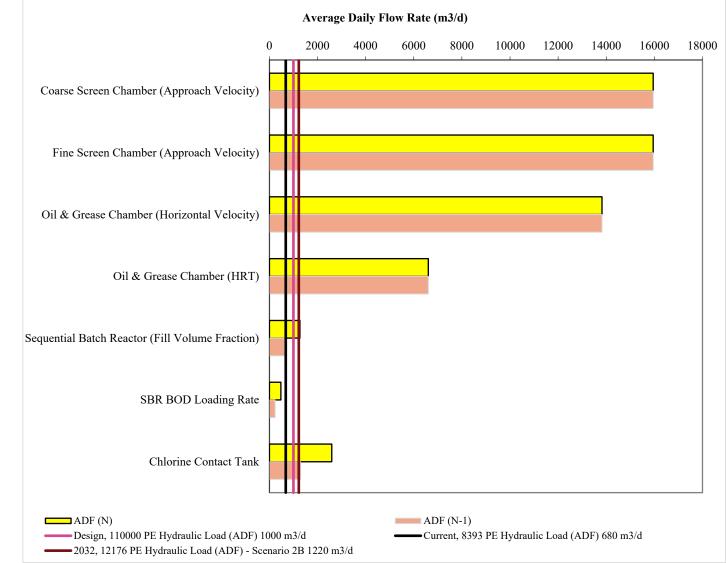
Taba WWTP Design Capacity: 1 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
 Insufficient to no historical data for all parameters required in effluent No influent quality data 	Based on the data given, COD, BOD and TSS are not usually tested unlike pH.	Develop a sampling plan and testing procedure for internal and third-party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality.	HIGH
		Influent characteristics should be established so that it could be used as a basis in constructing a centralized WWTP	LOW
Odor nuisance in WWTPs	No odor control unit	Provide a good ventilation and OCU in the treatment plant since the plant has nearby school	LOW
Have no removal for biological nutrient.No alkali/acid dosing	• Eco-line requires longer aeration time with suitable pH of	Investigate if the capacity of the eco-line is enough to further nitrify the wastewater to reach its target quality.	MEDIUM
There is denitrific • No anaet	wastewater for nitrification. There is no anoxic tank for denitrification.No anaerobic or chemical treatment to remove phosphorus.	 If the existing train is not enough for nitrification, consider exploring possible options to remove the ammonia up to its target quality such as the following: Addition unit for the eco-line and other auxiliaries like blower and provide an alkali/acid dosing Addition of biological aerated filter Addition of clay-based filter that can adsorb ammonia Retrofit it with other secondary treatment technologies like Step-feed, SBR, MLE. 	MEDIUM
		Investigate if the existing component of the plant can biodegrade the phosphorus of the wastewater up to its target effluent quality.	MEDIUM
		If not, provide a chemical (metal salts or polymer e.g. $FeCl_3$ or PAC) that can precipitate the phosphorus and examine if the existing setter is suitable to efficiently remove the precipitates. If not, consider to add another unit of settler.	MEDIUM

Taba WWTP Design Capacity: 1 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
No dewatering unit	Sludge holding tank is only present in the Taba WWTP based on the PFD provided.	Check the dewatering unit of Jungshina if there's an excess capacity	HIGH
		Transfer the sludge to Jungshina or provide dewatering unit	нси
No enough skilled personnel (i.e. Plant Manager, Process Engineer or Electro- mechanical Engineer)		Provide this skilled personnel to ensure the continuous operation of the plant as well as be certain that the effluent is conforming to the standard.	LOW
No operation and maintenance manual.	Assume there is no O&M manual or incomplete information	 Develop an operation and maintenance manual that comprised of the standard procedures of operating and maintaining each equipment/process with health and safety measures. It also includes the following: Detailed Design Criteria; Process controls monitoring system; Emergency operations plan and troubleshooting; Schedule of routine inspection and preventive maintenance; Sampling and/or water quality monitoring plan; Inventory of equipment, chemicals and other supplies needed; and Safe handling, storing and proper disposal of chemicals used. 	MEDIUM

Jungshina WWTP


Design Capacity: 1 MLD

Current Capacity: not yet operational;

- 68% of design capacity based on the network assessment

General Remarks:

- Insufficient capacity to cater 2032 flow
- No diagram since the assessment are based on the provided general drawings only because it is not yet started to operate.

Jungshina WWTP Design Capacity: 1 MLD

Current Capacity: 68% of design capacity based on the network assessment

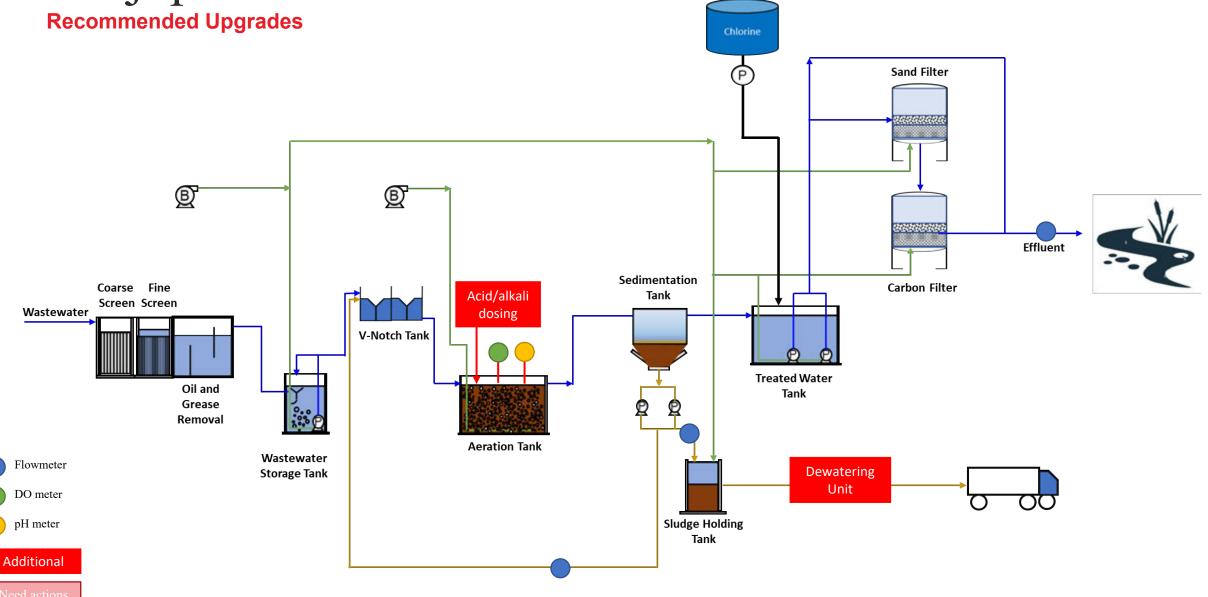
Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Size of the SBR tanks are not enough to biologically treat the wastewater.	• Assumed total cycle time is 4 hrs with fill and aeration time is 1.5 hrs, settle time is 1 hr, decant time is 1 hr and idle	 Further investigate the performance of the biological treatment by checking its removal efficiency. Further check the other auxiliaries equipment such as pumps and blowers if they can handle the increase of flow. 	HIGH
	time is 0.5 hr. • 60 g BOD/PE	If it is not capable meeting the standards, adjust the operation by modifying the intercycle phase duration.	MEDIUM
		If it still not capable meeting the standards, explore replacing the activated sludge by granular sludge.	MEDIUM
		If it still not capable meeting the standards, add additional unit of SBR	MEDIUM
		If the auxiliaries are not enough to cater the 2032 flow, consider add another unit of pumps, blowers and other auxiliaries.	MEDIUM
Have no removal for biological nutrient	 Nitrification always happen with sufficient time of aeration as well as with the right pH. Treatment plant has additional anoxic tank as well as in the SBR sequence hence, denitrification can be done. No anaerobic or chemical treatment to remove phosphorus. 	Investigate if the existing SBR is enough to further nitrify the wastewater to reach its target quality.	MEDIUM
		 If the reactor is not enough for nitrification, consider exploring possible options to remove the ammonia up to its target quality such as the following: Adjust the operation by modifying the intercycle phase duration. Exploring converting activated sludge into granular sludge Addition unit of SBR and other auxiliaries like blower Addition of biological aerated filter Addition of clay-based filter that can adsorb ammonia Retrofit it with other secondary treatment technologies like Step-feed, SBR, MLE. 	MEDIUM

Jungshina WWTP Design Capacity: 1 MLD

Current Capacity: 68% of design capacity based on the network assessment


Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
e e	• Nitrification always happen with sufficient time of aeration as well as with the right	Investigate if the existing component of the plant can biodegrade the phosphorus of the wastewater up to its target effluent quality.	MEDIUM
	 pH. Treatment plant has additional anoxic tank as well as in the SBR sequence hence, denitrification can be done. 	If not, provide a chemical (metal salts or polymer e.g. FeCl ₃ or PAC) that can precipitate the phosphorus and examine if the precipitates can settle within the settling time.	MEDIUM
No anaerobic o	• No anaerobic or chemical treatment to remove phosphorus.	If precipitate cant settle within the settling time, consider add a filter after reactor in order to remove the precipitates in the effluent.	MEDIUM

Lanjophakha WWTP Design Capacity: 0.6 MLD


Current Capacity: 45% of design capacity

General Remarks:

• All equipment in the graph are hydraulically capable to cater 2032 flow.

Lanjophakha WWTP

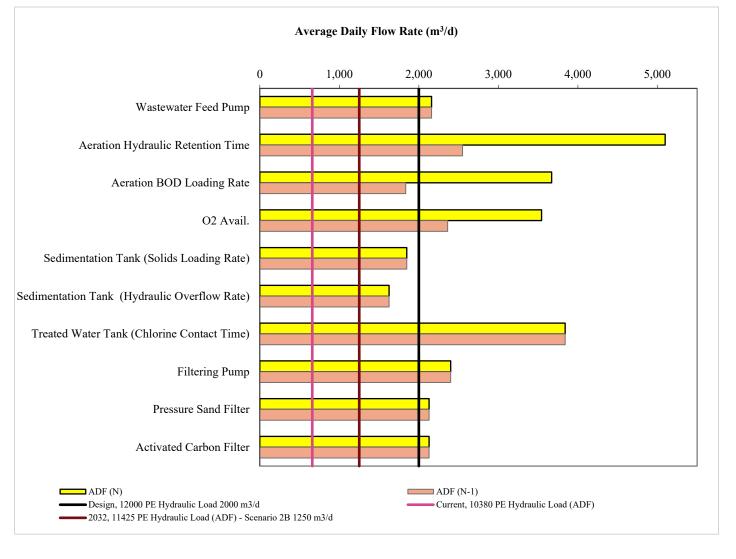
Lanjophakha WWTP Design Capacity: 0.6 MLD

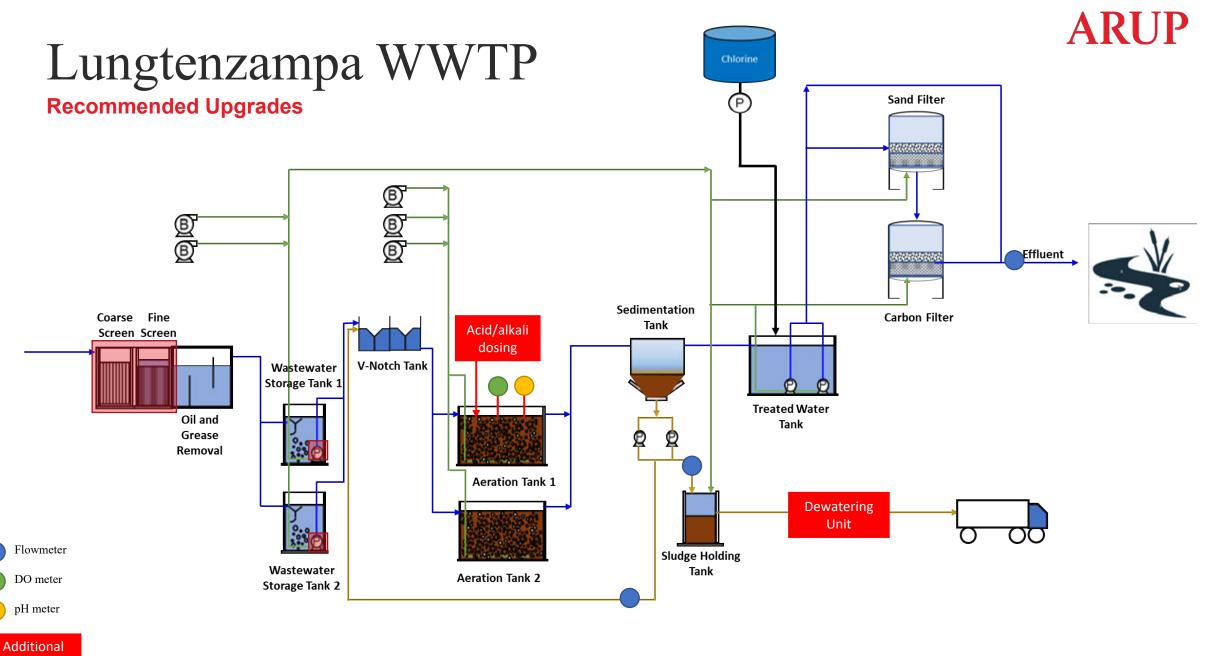
Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Deterioration of screens	Based on the picture captured during site visit	Consider checking the screens on site, if screens are already worn out that will result in ineffective removal of debris from the raw wastewater.	MEDIUM
		Further investigate the effluent TSS as well as frequency of failure of downstream pumps and other equipment.	MEDIUM
		If it is already affecting the effluent as well the performance of other equipment, consider replacing the screens.	MEDIUM
		Have a frequent maintenance of the screens in order not to accumulate the solids.	MEDIUM
		If the screens is already insufficient, consider add another unit of screens.	MEDIUM
Possible short circuiting happens in a Treated Water Tank	Assume that there is no mixer or baffle in the tank.	Investigate the effluent's fecal coliform.	MEDIUM
		If there's a time that effluent exceeds the limit, it requires an addition of baffle or mixer.	MEDIUM
Other components of treatment plant which were not assessed like blowers, pumps and filters may not capable to handle the 2032 flow		Further investigate or check its capacity, if it is not sufficient to cater 2032 flow, provide additional unit of these equipment.	HIGH
Possible difficulty in operating the plant	No SCADA and online instruments such as pH and DO but there is a local PLC in the treatment plant.	Install online pH and DO analysers, and the associated SCADA control and monitoring.	LOW

Lanjophakha WWTP Design Capacity: 0.6 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Odor nuisance in WWTPs	Assume there is no odor control unit.	Provide a good ventilation and OCU in the treatment plant since the plant has nearby residences	LOW
		Consider adding a trash bin with the lid and have a proper disposal method for the screenings.	LOW
Have no removal for biological nutrient.No alkali/acid dosing	• Activated sludge requires longer aeration time with suitable pH of wastewater for	Investigate if the capacity of the aeration tank is enough to further nitrify the wastewater to reach its target quality as well as the blowers.	MEDIUM
denitrification • No anaerobic	nitrification. There is no anoxic tank for denitrification.No anaerobic or chemical treatment to remove phosphorus.	 If the existing tank is not enough for nitrification, consider exploring possible options to remove the ammonia up to its target quality such as the following: Addition unit of the aeration tank and other auxiliaries like blower and provide an alkali/acid dosing Addition of biological aerated filter Addition of clay-based filter that can adsorb ammonia Retrofit it with other secondary treatment technologies like Stepfeed, SBR, MLE. 	MEDIUM
		Investigate if the existing component of the plant can biodegrade the phosphorus of the wastewater up to its target effluent quality.	MEDIUM
		If not, provide a chemical (metal salts or polymer e.g. $FeCl_3$ or PAC) that can precipitate the phosphorus and examine if the existing setter is suitable to efficiently remove the precipitates. If not, consider to add another unit of settler.	MEDIUM

Lanjophakha WWTP Design Capacity: 0.6 MLD


Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
No sludge treatment	Sludge holding tank can store the sludge within few hrs	Provide dewatering unit if there's available space	HIGH
Insufficient to no historical data for all parameters required in effluentNo influent quality data	Based on the data given, COD, BOD and pH are being tested three times per month.	Develop a sampling plan and testing procedure for internal and third- party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality.	HIGH
		Influent characteristics should be established so that it could be used as a basis in constructing a centralized WWTPs	LOW
No enough skilled personnel (i.e. Plant Manager, Process Engineer or Electro- mechanical Engineer)		Provide this skilled personnel to ensure the continuous operation of the plant as well as be certain that the effluent is conforming to the standard.	LOW
No operation and maintenance manual.	Assume there is no O&M manual or incomplete information	 Develop an operation and maintenance manual that comprised of the standard procedures of operating and maintaining each equipment/process with health and safety measures. It also includes the following: Detailed Design Criteria; Process controls monitoring system; Emergency operations plan and troubleshooting; Schedule of routine inspection and preventive maintenance; Sampling and/or water quality monitoring plan; Inventory of equipment, chemicals and other supplies needed; and Safe handling, storing and proper disposal of chemicals used. 	MEDIUM


Lungtenzampa WWTP Design Capacity: 2 MLD

Current Capacity: 33% of design capacity

General Remarks:

- All equipment in the graph are hydraulically capable to cater 2032 flow but insufficient to cater the design flow.
- Currently, not operational since August 2022

Nagal antique

Lungtenzampa WWTP Design Capacity: 2 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Plant is not functional due to leaked pumps.	Based on the site visit.	 Conduct full maintenance of troubleshooting and assess if equipment condition is acceptable for operation. There are many causes why the pumps are leaking. This could be because of the following: seal material or bearings is already worn out, not enough lubrication on the shaft, or there is too much instability in the operating condition of the pumps like too much pressure drops or spikes. 	HIGH
		If the pumps are not recoverable, consider replace the damaged pumps	MEDIUM
Screens are hydraulically overloaded.	 Failure of some downstream pumps; Based on the picture, the water level is already reaching the overflow pipe. 	 Further investigate the influent TSS, effluent TSS and operation condition. Evaluate the removal efficiency and check if the solids are accumulated on the chambers that can affect the equipment downstream. Consider revisiting the maximum allowable side water depth, which should be lower than the invert level of an overflow pipe, to identify if one unit is enough to cater for the design flow. 	HIGH
		If it is already affecting the effluent quality as well the performance of other equipment, consider replacing the screens.	MEDIUM
		If the screens is already insufficient, consider add another unit of screens.	MEDIUM

Lungtenzampa WWTP Design Capacity: 2 MLD

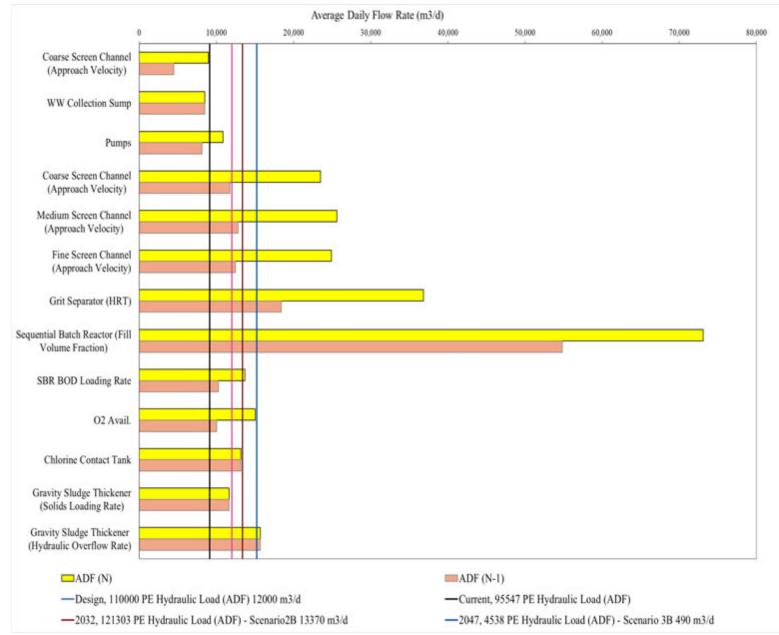
Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Possible not functional of other equipment	Few months of being shutdown	Consider checking the equipment which is not running for a long time like pumps and blowers if its effectively running according its design capacity.	HIGH
		Consider checking the electrical line cable, instrumentation, and pipeline if still in good condition that there is leak/damage and clogging.	HIGH
Possible clogging of diffusers in wastewater storage tanks and aeration tanks	It is not operational for few months.	Check its performance during the operation.	HIGH
		If it is already clogged, consider replacement of the diffusers	MEDIUM
Sedimentation tank is not reaching its design capacity.	 60 g BOD/PE MLSS = 3000 mg/L RAS Ratio = 0.6 	Further investigate the inlet, outlet TSS of sedimentation tank and effluent characteristics. Check its removal efficiency.	LOW
		If it is affecting the effluent TSS by exceeding the limit, consider add a lamella or provide additional unit.	LOW
Possible short circuiting happens in a Treated Water Tank	Assume that there is no mixer or baffle in the tank.	Investigate the effluent's fecal coliform.	MEDIUM
		If there's a time that effluent exceeds the limit, it requires an addition of baffle or mixer.	MEDIUM
Possible difficulty in operating the plant	No SCADA and online instruments such as pH, DO, turbidity/TSS analyzers but there is a local PLC in the treatment plant.	Install online turbidity/TSS, pH and DO analysers, and the associated SCADA control and monitoring.	LOW

Lungtenzampa WWTP Design Capacity: 2 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Odor nuisance in WWTPs	Assume there is no odor control unit.	Provide a good ventilation and OCU in the treatment plant.	LOW
		Consider adding a trash bin with the lid and have a proper disposal method for the screenings.	LOW
Have no removal for biological nutrient.No alkali/acid dosing	• Activated sludge requires longer aeration time with suitable pH of wastewater for	Investigate if the capacity of the aeration tank is enough to further nitrify the wastewater to reach its target quality as well as the blowers.	MEDIUM
	nitrification. There is no anoxic tank for denitrification. • No anaerobic or chemical treatment to remove phosphorus.	 If the existing tank is not enough for nitrification, consider exploring possible options to remove the ammonia up to its target quality such as the following: Addition unit of the aeration tank and other auxiliaries like blower and provide an alkali/acid dosing Addition of biological aerated filter Addition of clay-based filter that can adsorb ammonia Retrofit it with other secondary treatment technologies like Stepfeed, SBR, MLE. 	MEDIUM
		Investigate if the existing component of the plant can biodegrade the phosphorus of the wastewater up to its target effluent quality.	MEDIUM
		If not, provide a chemical (metal salts or polymer e.g. $FeCl_3$ or PAC) that can precipitate the phosphorus and examine if the existing setter is suitable to efficiently remove the precipitates. If not, consider to add another unit of settler.	MEDIUM

Lungtenzampa WWTP Design Capacity: 2 MLD

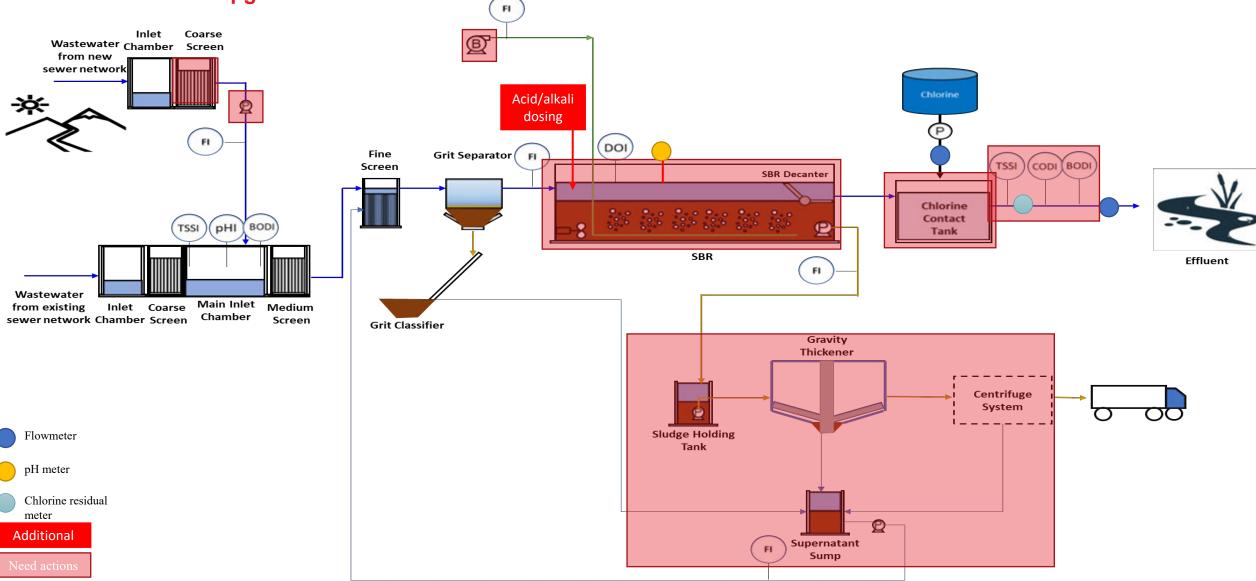
Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
No sludge treatment	Sludge holding tank can store the sludge within few hrs	Provide dewatering unit if there's available space	HIGH
 Insufficient to no historical data for all parameters required in effluent No influent quality data 	Based on the data given, COD, BOD and pH are being tested three times per month.	Develop a sampling plan and testing procedure for internal and third- party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality.	HIGH
		Influent characteristics should be established so that it could be used as a basis in constructing a centralized WWTPs	LOW
No enough skilled personnel (i.e. Plant Manager, Process Engineer or Electro- mechanical Engineer)		Provide this skilled personnel to ensure the continuous operation of the plant as well as be certain that the effluent is conforming to the standard.	LOW
No operation and maintenance manual.	Assume there is no O&M manual or incomplete information	 Develop an operation and maintenance manual that comprised of the standard procedures of operating and maintaining each equipment/process with health and safety measures. It also includes the following: Detailed Design Criteria; Process controls monitoring system; Emergency operations plan and troubleshooting; Schedule of routine inspection and preventive maintenance; Sampling and/or water quality monitoring plan; Inventory of equipment, chemicals and other supplies needed; and Safe handling, storing and proper disposal of chemicals used. 	MEDIUM


Babesa WWTP

Design Capacity: 12 MLD

Current Capacity: 76% of the design capacity

General Remarks:


• Insufficient capacity to cater the 2032 and 2047 flow

Babesa WWTP

Babesa WWTP Design Capacity: 12 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
 Outside coarse screen may be insufficient in receiving the wastewater from new sewer line. One of the coarse screen is not functional. 	 Assumed the flow passing through is 12 MLD. Ratio of clear opening area/cross-section area of water = 0.5 	 Validate actual flow measures coming from the new sewer line and evaluate with the existing capacity of the coarse screens Investigate if there is a frequent failure of pumps downstream to check if the screens are sufficient to remove the solids. 	HIGH
	• Angle of slant (horizontal) = 60°	If the flow is greater than the capacity of the coarse screen, it needs an additional another chamber with coarse screen.	MEDIUM
		Prepare a service report of the defective coarse screen.	HIGH
		If the defective coarse screen cannot be troubleshoot, replace it with a new one.	MEDIUM
		Properly maintain the screens in order for the solids to not accumulate.	MEDIUM
Insufficient capacity of pump	 Assumed the flow going in and needs to pump is 12 MLD. Actual each pump capacity is 158.30 m³/hr with 4 units. 	Identify the influent flow for this line. Identify the influent flow for this line. If the pump capacity is not enough, add a unit or replace with higher capacity.	HIGH
Screens (Coarse, Medium and Fine Screens) inside of the preliminary building are insufficient if only 1 Duty+1 Stand-by.	 Assumed the flow passing through is 12 MLD. Ratio of clear opening area/cross-section area of water = 0.5 Angle of slant (horizontal) = 60° 	Identify how many flow is going to these screens as well as the removal efficiency of solid from the inlet up to the outlet of fine screens.	MEDIUM
		If the flow is greater than the capacity as well as inefficient of solid removal, consider additional unit of screens.	LOW
		Properly maintain the screens in order for the solids to not accumulate.	MEDIUM

Babesa WWTP Design Capacity: 12 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
Size of the SBR tanks are not enough to biologically treat the wastewater when 3	• Total cycle time considered is 4 hrs with fill and aeration time is 1.5 hrs, settle time is 1	Further investigate the performance of the biological treatment by checking its removal efficiency.	HIGH
Duty+1 Stand-by and insufficient by 11% with 2047 flow even if all units are running.	 hr, decant time is 1 hr and idle time is 0.5 hr. BOD loading rate used is 0.3 kgBOD/m³/d. 	If it is not capable meeting the standards, adjust the operation by modifying the intercycle phase duration.	MEDIUM
	• Fill Volume Fraction is 0.12 from SVI 120 mg/L.	If it still not capable meeting the standards, explore replacing the activated sludge by granular sludge.	MEDIUM
	• 60 g BOD/PE	If it still not capable meeting the standards, add additional unit of SBR tank.	MEDIUM
		If the auxiliaries are not enough to cater the 2032 flow, consider add another unit of pumps, blowers and other auxiliaries.	MEDIUM
Aeration Blower is insufficient when 2D+1S and insufficient by 1% with 2047 flow even if all units are running.	The assumed rated capacity is 740 m ³ /hr based on the captured SCADA.	Validate the flow of assumed capacity of the blower. If it is validated that this is insufficient since it is necessary to have stand-by unit of blower, provide additional unit.	HIGH
Insufficient contact time in chlorine tankPossible short circuiting happens in a	90 mins HRTAssume that there is no mixer or baffle in	Investigate the effluent's fecal coliform.	HIGH
Treated Water Tank	the tank.	If there's a time that effluent exceeds the limit, adjust the dosing of chlorine since there is no sufficient contact time.	MEDIUM
		If there's a time that effluent exceeds the limit, it requires an addition of baffle or mixer.	MEDIUM
		If there's a time that effluent exceeds the limit, it requires an addition of baffle or mixer.	MEDIUM

Babesa WWTP Design Capacity: 12 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating		
Sludge Holding Tank can only store the sludge for approximately at most hours.	 24 hrs operating 60g BOD/PE Sludge Specific Yield (0.8 kg dry 	holding tank has enough capacity to cater the amount of time when the sludge treatment is in downtime.			
	 sludge/kg BOD) 1% concentration of sludge 1050 kg/m³ sludge density 	If it's insufficient, provide an additional sludge holding tank or extend the existing tank or increase the time of sludge treatment considering that the other equipment is capable to handle that duration via adding unit of the downstream equipment like thickener and dewatering unit.	MEDIUM		
Insufficient capacity of Gravity Sludge Thickener as well as the Dewatering Unit to cater the		Identify the flow of the waste activated sludge and check if its effectively thickened the sludge up to its desirable moisture content.	HIGH		
sludges in terms of solids loading rate.		If not sufficient, then consider add a polymer or increase the dosing of polymer if its already has polymer dosing or provide additional unit of thickener and centrifuge,	MEDIUM		
Have no removal for biological nutrient.No alkali/acid dosing	• Nitrification always happen with sufficient time of aeration as well as	Investigate if the existing SBR is enough to further nitrify the wastewater to reach its target quality.	MEDIUM		
	 with the right pH. Treatment plant has additional anoxic tank as well as in the SBR sequence hence, denitrification can be done. No anaerobic or chemical treatment to remove phosphorus. 	 If the reactor is not enough for nitrification, consider exploring possible options to remove the ammonia up to its target quality such as the following: Adjust the operation by modifying the intercycle phase duration. Exploring converting activated sludge into granular sludge Addition unit of SBR and other auxiliaries like blower and alkali/acid dosing Addition of air stripping system Addition of biological aerated filter Addition of clay-based filter that can adsorb ammonia Retrofit it with other secondary treatment technologies like Step-feed, SBR, MLE. 	MEDIUM		

Babesa WWTP Design Capacity: 12 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating			
Have no removal for biological nutrient	• Nitrification always happen with sufficient time of aeration as well as with the right					
	 pH. Treatment plant has additional anoxic tank as well as in the SBR sequence hence, denitrification can be done. 	If not, provide a chemical (metal salts or polymer e.g. FeCl ₃ or PAC) that can precipitate the phosphorus and examine if the precipitates can settle within the settling time.	MEDIUM			
	• No anaerobic or chemical treatment to remove phosphorus.	If precipitate cant settle within the settling time, consider add a filter after reactor in order to remove the precipitates in the effluent.	MEDIUM			
Possible odor problem in a preliminary treatment	Debris is manually collected and placed in the open basin	Consider adding a trash bin with the lid or screen compactors and have a proper disposal method for the screenings. The recovered supernatant from compactors should be directed to the main inlet chamber.	MEDIUM			
Possible difficulty in operating the plant	With SCADA and online instruments	Identify the online controls that should be monitored and controlled by the plant's current basic SCADA.	LOW			
		If insufficient to easy to adjust or control the plant, install online instruments and add it in the SCADA.	LOW			
 Insufficient to no historical data for all parameters required in effluent Insufficient to no historical data for influent quality 	COD, BOD, and TSS parameters can be seen in the analog monitoring	Develop a sampling plan and testing procedure for internal and third- party laboratory testing and analysis for all required parameters to ensure compliance and identify its influent quality.	HIGH			

Babesa WWTP Design Capacity: 12 MLD

Issues Identified	Basis/Assumptions	Recommendation	Criticality Rating
No enough skilled personnel (i.e. Plant Manager, Process Engineer or Electro- mechanical Engineer)	Assume that there is no skilled personnel in 30 personnel	Provide the skilled personnel to ensure the continuous operation of the plant as well as be certain that the effluent is conforming to the standard.	LOW
No operation and maintenance manual.	Assume there is no O&M manual or incomplete information	 Develop an operation and maintenance manual that comprised of the standard procedures of operating and maintaining each equipment/process with health and safety measures. It also includes the following: Detailed Design Criteria; Process controls monitoring system; Emergency operations plan and troubleshooting; Schedule of routine inspection and preventive maintenance; Sampling and/or water quality monitoring plan; Inventory of equipment, chemicals and other supplies needed; and Safe handling, storing and proper disposal of chemicals used. 	MEDIUM

Appendix H New WWTP Pre-selection

JOB TITLE	Thimpu Water Services Masterplan
JOB NUMBER	289551-01
MADE BY	EV
CHECKED BY	PC
DATE	10/05/2023
Description of spreadsheet	New WWTP - Pre-selection Screening
Sheet Number prefix	
Member/Location	
Drawing Reference	

Filename

CONTENTS OF SPREADSHEET

Sheet	Description
Cover	
Criteria Guide Note Part 1	WWTP Pre-Selection Criteria Guide Note for 1st Stage
Criteria Guide Note Part 2	WWTP Pre-Selection Criteria Guide Note for 2nd Stage
Options Screening	WWTP Pre-Selection Criteria and Scoring

AUTHORISATION OF LATEST VERSION

Type and method of check		
Signatures & dates:	Made by	EV
	Checked	PC

REVISIONS Current		t Revision	0	
Rev.	Date	Made by	Checked	Description
0	10/05/23	EV	PC	Pre-Selection

		Job No.		Sheet No.			Rev.	
AR	[]P	289551-0	01	1			0	
Job Title	Title Thimpu Water Services Masterplan							
Calculation	Criteria Guide Note Part 1		Made by	EV	Date	10/05/2023	Chd.	PC

Stage	Category Q	a# Criteria	Question	MBR	MLE	Oxidation Ditch	SBR	Step-feed	AGS	IFAS	BAF/SAF	FBBR	MBBR	RBC	Trickling Filter
	Brief Description			Suspended growth process with membrane filtration	Suspended growth process		Batch suspended growth process	Plug flow of suspended growth	Granular activated sludge	Suspended growth reactor with attached growth media	Attached growth process with fixed bed filter	Attached growth process with fixed bed biofilm	Attached growth process with moving bed biofilm		Attached growth process with fixed bed filter
Preselection Criteria	ICA Criteria	Biological Nutrient Removal Capability	Does the technology - considering proper configuration, without combining with other techs - meet the biological nutrient (nitrogen and phosphorus) removal targets based on the influent characteristics?	commonly applied	common methods used for biological nitrogen	Considered as Cyclic Nitrification – Denitrification process typically done in single reactor systems or	(Aerobic) can be	Multi-stage reactors can be configured to anoxic/aerobic set-up <5 mg/L TN effluent is achievable	Simultaneous Nitrification and Denitrification occurs with nitrification in the outer layer of the granules and denitrification in the inner layers. Similar or better effluent quality than other BNR technologies	despite the limited SRT in the suspended growth process.	denitrification process depending on the	for nitrification but also capable of biological denitrification in tertiary treatment applications; Can achieve effluent	heterotrophic and nitrifying bacteria can	bacteria and anaerobic denitrifying bacteria can	Applications include combined BOD removal and nitrification, however, difficult in accomplishing biological nitrogen and phosphorus removal compared to single- sludge biological nutrient removal suspended growth
st Stage	Level h	Weather 2 Adaptability	Does it capable to run in a cold weather condition?	Suitable but potential issues may arise during the cold weather	Suitable but potential issues may arise during the cold weather	issues may arise during	Suitable but potential issues may arise during the cold weather	Suitable but potential issues may arise during the cold weather	Suitable but potential issues may arise during the cold weather		Suitable but potential issues may arise during the cold weather	Suitable but potential issues may arise during the cold weather	Suitable but potential issues may arise during the cold weather		Suitable but potential issues may arise during the cold weather
1	High	Space 3	Does the technology fit in the available area?	Small	Mid	Largest	Relatively small depends on depth	Small	Small	Large	Small	Small	Small	Small	Large
	4	Capacity 4	Does the technology is suitable in low capacity? Is it usually used for treatment plants with low flow?		Have existing plants and potential suppliers with low capacity	Have potential suppliers with low capacity	Have existing plants and potential suppliers with low capacity	Generally applicable	Have existing plants and potential suppliers with low capacity	Have potential suppliers with low capacity	Have potential suppliers with low capacity	Generally applicable	Have potential suppliers with low capacity	Have existing plants and potential suppliers with low capacity	

		Job No.		Shee	et No.		Rev.	
	UP	289551-01			2		0	
	01	Member/Location						
Job Title	Thimpu Water Services Masterplan	Drg. Ref.						
Calculation	Criteria Guide Note Part 2	Made by	EV	Date	10/05/2023	Chd.	PC	

Stores	Category	Question	Weighting	Criteria	Questions		SCORE GUIDE	
Stage	Category	No #	(0-10 points)			1 - worst	2	3 - Best
		5	20	TT experience	Does TT have experience with using such technology?	TT has no experience regarding the operation of this type of process facility	TT has some and/or limited experience with such technology. TT has at least 1 plant with this type of technology	TT has extensive experience with operating this type of technology. It has more than 1 plant of this type of process technology and has more than 5 years experience with using this technology
		6	20	Operation & Maintenance	Is this technology difficult to operate and maintain.	This technology is difficult to maintain, due to factors such as: - requiring permanent personnel onsite, - requiring complex SCADA and controls systems in place to monitor the treatment process. - Requires specialist expertise and knowledge to operate and maintain which skills cannot be easily obtained, procured or trained locally	- Majority of labor and materials can be sourced and	This technology is easy to maintain. Such factors to determine this may include: - Requiring minimal personnel onsite to manage and operate the plant - technology has simple and/or limited SCADA controls and systems required in place to monitor. - The plant essentially can run it self. - All labor and materials to run the plant can be sourced locally or in India
		7	15	Constructability	Is this process easy to construct (i.e. are there a number of flow splits, clarifiers with slope bottom, difficult formwork)?	The process technology is difficult to construct with issues/risks may include: - complex structures, requiring complex formwork - deep pits (>6m) - equipment that cannot be sourced locally and may need to be imported	The process technology is does not have many major risks or issues that are currently known.	The process technology is relatively easy to construct. Overall construction may include; - relatively shallow pits deep pits (<6m), - all electrical mechanical equipment can be sourced locally. - All structures are relatively straightforward and formwork is not complex.
2nd Stage Preselection Criteria	High Level MCA Criteria	8	20	Reliability	Is this process reliable and robust?	The process technology is not robust and unreliable. The determination of this is due to the following factors such as - The technology is unproven and with a little performance record in this region and climate - this technology is influenciable and cannot perform with changing conditions (flow, load, concentrations)	The process technology is somewhat reliable and robust. The determination of this is due to the following factors such as - The technology is proven elsewhere and with solid performance record , however it has not been tried and/or has a record of success in this region and/or climate - this technology is flexible and has a limited performance record within changing conditions (flow, load, concentrations), however there are some doubts to the records of success and performance in this region.	The process technology is robust and reliable. The determination of this is due to the following factors such as - The technology is proven and with a solid performance record in this region and climate - this technology is flexible and can perform with changing conditions (flow, load, concentrations)
2nd	± -	9	15	Equipment, Chemicals and other requirements	Is this process using chemicals that are not readily available locally? Are the chemicals expensive? Replacement equipment (pumps, parts etc.)	Determination of this within this category may include factors such as: - chemicals cannot be sourced locally and have to be imported - equipment can be easily replaced and shave to be imported - operating equipment and perishable items needed are expensive and cannot be sourced locally	such as: -Some chemicals cannot be sourced locally and have to be imported - Some equipment can be easily replaced and shave to be imported - Some operating equipment and perishable items needed are expensive and cannot be sourced locally	Determination of this within this category may include factors such as: - chemicals can be sourced locally easily at competitive prices - equipment can be easily replaced and sourced locally - operating equipment and perishable items needed are relatively inexpensive and can be sourced locally
				Envi & Social Impacts	Does this technology has any types/amounts of treatment residuals not acceptable to TT or have negative environmental impacts? Does this technology have a different level of social impact to the nearby community	This process technology has increased adverse social and environmental impacts. Determination within this category may include: Increased of higher external air, noise pollution caused by this technology compared to other technologies known in the market Detrimental disturbance to the nearby community Increased of higher footprint requirements which may lead to higher area/land requirements of this technology compared to other technologies known in the market Increased of higher energy consumption requirements leading to an increased carbon footprint of this technology compared to other technologies known in the market	This process technology has social and environmental impacts. Determination within this category may include: - adverse external air, noise pollution caused by this technology compared to other technologies known in the market - adverse disturbance to the nearby community	This process technology has limited or minimal adverse social and environmental impacts. Determination within this category may include: - Minimal external air, noise pollution caused by this technology compared to other technologies known in the market - Minimal disturbance to the nearby community - reduced footprint requirements which may lead to reduced area requirements - reduced energy consumption requirements leading to a smaller carbon footprint
		10	10					
			100					

Note:

Assuming the technology will not be combined with other treatment technologies for preliminary and tertiary.

				Shee	Sheet No.		Rev.
ARUP		289551-0	01	3			0
		Member/Loc	ation				
Job Title	Thimpu Water Services Masterplan	Drg. Ref.					
Calculation	Options Screening	Made by	EV	Date	10/05/2023	Chd.	PC

			1st Stage Pre Selection Criteria High Level MCA						
Biological Trea	Q1 BNR	Q2 Weather Adaptability	Q3 Space	Q4 Capacity	REMARKS				
	Membrane Bio-Reactor (MBR)	Y	Y	Y	Y	Smallest space needed; identified existing treatment plants with low capacity but with the highest CAPEX and OPEX			
	Modified Ludzack-Ettinger (MLE)	Y	Y	Y	Y	Identified existing treatment plants with low capacity; Low CAPEX and OPEX			
Suspended Growth	Oxidation Ditch	Y	Y	Y	Y	Largest space needed; Have potential suppliers with low capacity, Higher CAPEX and OPEX than MLE			
_	Sequencing Batch Reactor (SBR)	Y	Y	Y	Y	Possible small space needed but it depends on the depth of the tank; Identified existing treatment plants with low capacity	NOTE - ONLY MLE SBR, STEF		
	Step Feed	Y	Y	Y	Y	Small space needed; Low OPEX but higher CAPEX than MLE	FEED, AGS AND MBRR GE		
Granular	Aerobic Granular Sludge (AGS)	Y	Y	Y	Y	Small space needed; Identified existing treatment plants with low capacity; Low OPEX but higher CAPEX than MLE	CARRIED THROUGH TO THE 2ND		
							STAGE HIGH		
Hybrid	Integrated Fixed Film Activated Sludge (IFAS)	Y	Y	Y	Y	Large space needed; Have potential suppliers with low capacity; Higher CAPEX than MLE	LEVEL MCA ANALYSIS		
Γ	Biological Aerated Filter (BAF) or Submerged Aerated Filter (SAF)	Y	Y	Y	Y	Small space needed; Have potential suppliers with low capacity; Lower OPEX but higher CAPEX than MLE			
	Fixed Bed Biofilm Reactor (FBBR)	Y	Y	Y	Y	Small space needed: Lower OPEX but higher CAPEX than MLE			
Biofilm	Moving Bed Biofilm Reactor (MBBR)	Y	Y	Y	Y	Small space needed; Have potential suppliers with low capacity; Lower OPEX but higher CAPEX than MLE			
_	Rotating Media Reactor	Y	Y	Y	Y	Small space needed; Identified existing treatment plants of low capacity; Protection of the system in a cold climate is difficult			
	Trickling Filter (FT)	Y	Y	Y	Y	Possible nutrient removal efficiency is lower as compared to others. Large space needed; Few identified treatment plants of low capacity;			

		2nd Stage Pi	re Selection Crite Level MCA	ria			
20	20	Hign 15	Level MCA 20	15	10	100	
Q5	Q6	Q7	Q8	Q9	Q10		
Thimpu Thromde Experience	Operation & Maintenanc e	Constructability	Reliability	Equipment, Chemicals and other requirements	Envi & Social Impacts	Weighted Score	Rank
3	3	3	2	3	2	270	1
2	2	2	2	3	2	215	3
					Į.		
1	2	2	2	2	3	190	4
		1			I		
	1			1			
	1			1			
3	2	3	3	3	2	270	1
				1			
				1			

Very suitable Commonly Suitable Slightly suitable but with problem

Appendix I

Wastewater Separation Strategy Example

Phase 1 Example: Dechencholing WWTP Catchment

The plan below illustrates the scale of investigation for the Dechencholing catchment wastewater separation strategy. It excludes investigations at the WWTP which will be required as part of the wider Wastewater Masterplan. The local team will need to procure investigation with suitably qualified individuals and organisations with the correct safety systems and hardware to deliver the requirements safely and of suitable quality.

For the more technically challenging surveys wider support and training may be required. Investigations are often adaptive; an initial desk study will form the initial plan (example as below), then during the surveys the plans will adapt depending on findings. For example, if significant levels of infiltration or silt are observed, local CCTV may be required to confirm the extent / source.

Flow survey is often the highest cost element but also at greatest risk of delivering poor data. Experience is needed to select appropriate sites (typically pipes > 225mm, sub-critical flow, lack of turbulence, representative of upstream network, downstream conditions, lack of shifting silt) and to also pro-actively manage the survey weekly.

4. Royal Estate, Education and Religious Facilities

Check connectivity of complex. Conduct drainage area survey for car parks and roof.

2. Residential Area a + b +c

Same as above but, as no drainage information is known for the housing development, conduct the connectivity survey for 1in5 properties.

3. Hospital Complex

Check connectivity of hospital trade flows. Conduct drainage area survey for hospital car park and roof.

1. Residential Area a + b

- Conduct connectivity survey for 1in10 properties. Assume the same connectivity for other
 properties of same age and housing development. Also identify any abandoned pipes that used to
 connect greywater to the foul network.
- Conduct drainage area survey for streets, carparks, and large roofs. Also test permeable areas liable to run-off to the network.
- Conduct manhole survey for:
 - Roughly every 50m down the foul trunk sewer and at least one manhole on each side sewer branch.
 - Any manholes containing bifurcations, flow controls, or sharp changes in direction/gradient.
 - Roughly every 50m down closed storm water drains.
 - Section details every 100m or at important step changes for open and natural stormwater drains.
- Asset survey for any storage tanks.
- Conduct CCTV along pipes of uncertain connectivity and pipes likely to be in poor state to identify infiltration/blockages/collapses.

